
- •Раздел 1.
- •Характеристика видов бизнеса.
- •2. Экономическое управление предприятием
- •Характеристика налоговой системы рф. Налог на добавленную стоимость.
- •Издержки. Классификация, виды и их особенности.
- •Прибыль. Сущность, виды и способы формирования и распределения
- •Рентабельность. Сущность, виды и способы расчета.
- •Понятие бизнес-плана предприятия и его основные разделы.
- •Эффективность предприятия в рыночной экономике.
- •Виртуальные предприятия. Их функционирование.
- •Общая характеристика процесса проектирования информационной системы.
- •Разработка пользовательского интерфейса.
- •Инструментальные средства проектирования информационных систем: классификация и примеры.
- •Типизация проектных решений.
- •Управление проектом информационной системы.
- •Основы функционирования важнейших видов информационного бизнеса
- •Индустрия информации, ее структура, продукция и место в экономике страны. Основные особенности продукции индустрии информации.
- •18. Основные и оборотные средства предприятий индустрии информации.
- •Информационный маркетинг как процесс коммуникации.
- •20. Правовая охрана интеллектуальной и промышленной собственности в информационной сфере.
- •Раздел VII. Права на результаты интеллектуальной деятельности и средства индивидуализации
- •Корпоративные информационные системы. Определение, структура, функции.
- •Корпоративные информационные системы. Классификация. Характеристики. Примеры.
- •Инфраструктура корпоративных информационных систем. Состав, краткая характеристика компонентов.
- •Преимущества и недостатки централизованной и распределенной модели управления данными.
- •27. Клиент-серверная и с сервисно - ориентированная информационные системы: свойства, отличительные особенности, архитектура.
- •28. Особенности проектирования и разработки oltp и olap приложений.
- •29. Особенности построения систем поддержки принятия управленческих решений (dss).
- •31. Разработка бизнес - логики на уровне сервера баз данных (хранимые процедуры, пользовательские функции, триггеры, механизмы поддержки целостности данных).
- •32. Классификация операционных систем. Управление задачами. Управление процессами и потоками в операционной системе.
- •33. Управление основной памятью. Виртуальная память и виртуальное адресное пространство приложения.
- •35. Назначение разделов основного диска. Типы и назначение динамических томов. Обеспечение отказоустойчивости динамических томов.
- •36. Протоколы локальных и глобальных сетей. Уровни сетевой архитектуры модели osi.
- •38. Понятие it-сервиса: основные требования по формированию, itil-библиотека.
- •41.Протокол sмтр. Сеанс и команды sмтр. Спецификация мiме. Кодирование в base64.
- •42. Мониторинг характеристик операционной системы.
- •Мониторинг и анализ локальных сетей.
- •44. Функциональные группы задач управления корпоративными сетями.
- •45. Формальные грамматики и языки. Синтаксические деревья. Задачи разбора и вывода.
- •46. Определение и процесс функционирования автомата с магазинной памятью.
- •47. Понятие автоматной грамматики. Построение и формальное описание конечного автомата.
- •48. Разбор с возвратами. Построение и формальное описание автомата с двумя магазинами.
- •49. Генерация объектного кода. Построение синтаксического дерева. Генерация объектного кода для линейных участков программ.
- •Виды резервирования надежности.
- •Перспективы развития информационных технологий.
- •Определение понятия информации.
- •60. Основные понятия оптимизационной экономико-математической модели
- •61. Переменные и ограничения оптимизационной экономико-математической модели(см.60)
- •Основные этапы решения оптимизационной задачи
- •67. Основные модели нейронов, применение нейронных сетей для задач распознавания образов.
- •1. Многослойные нейронные сети
- •2. Нейронные сети высокого порядка
- •3. Нейронные сети Хопфилда
- •4. Самоорганизующиеся нейронные сети Кохонена
- •5. Когнитрон
- •6. Достоинства и недостатки
- •68. Назначение врм-модуля для принятия управленческих решений. Инструментальные средства управления корпоративными знаниями.
- •Три составные части bpm
- •69.Классификация, основные свойства вi и км компонентов кис.
- •Характеристика и содержание основных этапов маркетинговых исследований. Основные методы проведения маркетинговых исследований.
- •Виды проектов маркетинговых исследований, их основные характеристики и взаимосвязь между ними.
- •Методы сбора данных. Вторичные и первичные данные, их преимущества и недостатки.
- •Виды измерительных шкал и их основные характеристики.
- •Методы выборочных исследований. Виды вероятностных и детерминированных выборок. Источники ошибок выборочных исследований.
- •Ошибки выборки
- •Ошибки наблюдений (измерений)
- •Ошибки отсутствия наблюдений
- •Анализ данных. Состав работ на этапе анализа данных. Кодирование открытых и закрытых вопросов.
- •Источники возникновения и цели реинжиниринга бизнес-процессов.
- •Оценка эффективности реинжиниринга бизнес-процессов.
- •Основные функции и свойства реинжиниринга бизнес-процессов.
- •Участники реинжиниринговой деятельности и их функции.
- •Определение понятия «бизнес - процесс».
- •82. Ресурсный подход к деятельности фирмы.
- •83.Корпоративная архитектура и ее составляющие.
- •84. Цели процессного подхода. Система терминов процессного подхода.
- •85. Применение правил выделения процессов. Пошаговое выделение процессов организации.
- •Раздел 6 «Управление ресурсами» — ресурсам процесса;
- •Раздел 7 «Выпуск продукции» — технологии процесса (учет требований потребителя, проектирование, закупки, выпуск продукции и т.Д.);
- •Раздел 8 «Измерения, анализ и улучшения» — организация мониторинга и улучшений процесса.
- •87.Управление данными
- •Управление данными: цели, задачи и основные направления
- •Иерархическая модель данных: типы структур, основные операции и ограничения
- •Сетевая модель данных: типы структур, основные операции и ограничения
- •Реляционная модель данных: типы структур, основные операции и ограничения
- •Инфологическая модель предметной области
- •4.1 Установка субд
- •4.2 Физическая организация базы данных. Файлы и файловые группы
- •4.3 Объекты базы данных
- •4.4 Модель безопасности
- •Резервное копирование и восстановление после сбоев
- •Высокая доступность данных
- •4.7 Репликация данных
- •4.8 Автоматизация административных задач
- •4.9 Мультисерверная среда
- •Разработка бизнес - логики базы данных. Хранимые процедуры и триггера
- •Целостность базы данных
- •Вопрос № 92
- •Толстый клиент
- •Тонкий клиент
- •Тонкие клиенты, работающие в терминальном режиме
- •Протоколы, используемые тонкими клиентами
- •Примеры тонких клиентов
- •Вопрос № 93
- •Вопрос № 94
- •Вопрос № 95
- •Вопрос № 96
- •97:Аутсорсинг. Классификация и модели
- •98. Промышленные сети. Требования, предъявляемые к ним.
- •99. Характеристика промышленной сети Profibus-dp
- •100. Характеристика промышленной сети Profibus-pa
- •101. Характеристика промышленной сети Profibus-fms
- •Формат кадра Базовый формат кадра данных
- •Расширенный формат кадра данных
- •107. Программируемый логический контроллер. Принцип работы. Eeprom
- •Программируемый логический контроллер. Основные характеристики. Eprom.
- •Характеристики
- •109. Составные модули пакета ArcInfo.
- •110.Геоинформационные системы Geograph
- •Расчет абсолютной эффективности
- •Учет фактора времени
- •Учет фактора неопределенности
- •Сравнение вариантов автоматизации
- •115. Система моделирования aris. Состав, возможности.
- •117. Языки bpel, uml. Возможности, сферы применения.
- •Диаграмма классов
- •Диаграмма компонентов
- •Диаграмма композитной/составной структуры
- •Диаграмма развёртывания
- •Диаграмма объектов
- •Диаграмма пакетов
- •Диаграмма деятельности
- •Диаграмма автомата
- •Диаграмма вариантов использования
- •Диаграммы коммуникации и последовательности
- •Диаграмма обзора взаимодействия
- •Диаграмма синхронизации
4. Самоорганизующиеся нейронные сети Кохонена
Самоорганизующиеся нейронные сети Кохонена (СНСК) обеспечивают топологическое упорядочивание входного пространства образов. Они позволяют топологически непрерывно отображать входное n-мерное пространство в выходное m-мерное, m<<n. Входной образ проецируется на некоторую позицию в сети, кодируемую как положение активированного узла. В отличие от большинства других методов классификации и кластеризации, топологическое упорядочивание классов сохраняет на выходе подобие во входных образах [2,10], что является особенно полезным при классификации данных, имеющих большое количество классов. Например, при классификации локальных участков изображений, может быть очень большое число классов, в которых переход от одного класса к другому практически непрерывен, затрудняя определение границ классов. Сети такого типа состоят из одного слоя (не считая входного), который так же может быть организован в n-мерную решётку, в зависимости от размерности выходного пространства. Каждый нейрон связан со всеми входными нейронами. Настройка весов сети осуществляется методом конкурентного обучения, в процессе которого изменяются только веса нейрона-победителя, имеющего максимальную активность. Существует так же метод, в котором изменяются и веса нейронов, соседних с победителем. В самоорганизующихся картах Кохонена (СКК), в отличие от векторных квантователей, нейроны решётки имеют связи с соседними нейронами, сила связей зависит от расстояния между ними. Для СНСК характерна высокая скорость обучения.
В [10] трёхмерная СКК (по 5 узлов на каждое измерение) применялась для уменьшения размерности локальных участков изображения 5х5 (размерность 25). Входное изображение отображается на один из 125 узлов, положение которого в трёхмерной решётке кодирует вектор выходного пространства. Три измерения СКК принимаются за три ключевых характеристики (features [10]). Такое преобразование обеспечило частичную устойчивость к изменению освещения, смещениям и искажениям, избавило от необходимости предварительной обработки изображения (преимущество – ускорение работы), а так же значительно ускорило процесс обучения и классификации, делая эту систему применимой в реальном времени (использовалась для распознавания лиц). Отмечено так же небольшое преимущество СКК перед методом анализа главных компонент, которое заключалось в более высокой точности последующей классификации на основе данных уменьшенной размерности.
Нейронная сеть с радиально-базисной функцией (НСРБФ) является дальнейшим развитием НС Кохонена, в которой после конкурентного слоя добавлен ещё один слой, обучаемый по методу обратного распространения. В отличие от НС Кохонена в НСРБФ выходами нейронов конкурентного слоя являются значения функции Гаусса с нормальным законом распределения, и обнуление не победивших нейронов не требуется. Ширина радиально-базисной функции характеризует расстояние между центром кластера, который образуется каждым нейронным элементом и его ближайшими соседями.
В [9] применялись две различные архитектуры НСРБФ для распознавания лиц. На вход сети поступали предварительно извлечённые характеристики, полученные методом анализа главных компонент или коэффициенты вэйвлетных преобразований. В первой архитектуре количество выходов соответствовало количеству классов, во второй применялся коллектив сетей, каждая из которых была обучена распознавать только свой класс. Отмечены значительные преимущества классификации НСРБФ перед непосредственным сравнением ключевых характеристик.
В [15] применялись две различные архитектуры ансамблей НСРБФ для предварительной классификации изображений. На вход сети поступало изображение целиком, на выходах формировалась промежуточная классификация, которая затем подавалась на решающие деревья для контекстно-ориентированного распознавания изображений лиц (например: “найти все изображения определённого человека, где он в очках”). Различные сети в ансамблях первой архитектуры учились классифицировать изображения с различными типами изменений, второй – с одинаковыми, но количество нейронов менялось в процессе обучения. Решающий вывод делал “судья”, который принимал решение на основе голосования ансамбля сетей.