
- •Автоматизированные судовые электроэнергетические системы
- •Часть 2 «Автоматизация системы управления сээс»
- •Содержание
- •Введение
- •1 Комплексная система управления «Залив-м»
- •1.1 Система комплексной автоматизации судовых электроэнергетических систем типа ижора-м
- •1.1.1 Алгоритм работы системы управления сээс типа “ижора-м”
- •1.1.2 Системы регулирования частоты вращения дизель-генераторов
- •1.1.3 Системы возбуждения и автоматического регулирования напряжения синхронных генераторов (сварн)
- •1.1.3.1 Принципы построения сварн синхронных генераторов
- •1.1.3.2 Система самовозбуждения и автоматического регулирования напряжения синхронных генераторов серии мсс
- •1.1.3.3 Система самовозбуждения и автоматического регулирования напряжения синхронных генераторов завода им. М. И. Калинина
- •1.1.3.4 Система возбуждения бесщеточного синронного генератора типа Siemens - thyripart
- •1.1.4 Автоматическое включение синхронных генераторов на параллельную работу
- •1.1.5 Автоматическое распределение активных и реактивных нагрузок между параллельно работающими генераторами
- •1.1.5.1 Распределение активных нагрузок
- •1.1.5.2 Распределение реактивных нагрузок
- •1.1.6 Автоматический пуск резервного генератора
- •1.1.7 Автоматический пуск аварийного дизель-генератора, включение нагрузки
- •1.1.8 Защита от обрыва фазы при питании с берега
- •1.1.9 Автоматический контроль сопротивления изоляции в судовой сети
- •1.1.10 Устройство звуковой и световой сигнализации
- •1.1.11 Автоматизированные защитные устройства генераторов
- •1.2 Система дистанционного автоматического управления дизель-генераторами «Роса - м»
- •1.3 Судовая информационно-измерительная система «Шипка - м»
- •1.3.1 Общая характеристика
- •1.3.2 Структурная схема иис «Шипка-м»
- •1.4 Система дистанционного автоматического управления главными двигателями «Гром»
- •1.5 Система дистанционного и автоматизированного контроля и управления судовыми системами «Нарочь-м»
- •2 Компьютеризированное управление сээс с использованием модулей компании selko
- •2.1 Управление генераторами
- •2.2 Защита генераторов и контроль мощности
- •2.3 Интегрированные компьютерные системы автоматизации на базе модулей компании selco
- •2.3.1 Модуль sigma s6000 io/p
- •2.3.2 Модуль sigma s6100 s/ls
- •2.3.3 Контроллер генератора с6200
- •2.3.4 Интегрированный модуль sigma s6610 (s6500 ui)
- •3 Микропроцессорная система управления типа asa-s
- •3.1 Структурно-функциональные схемы
- •3.2 Алгоритмы управления судовыми дизель-генераторными агрегатами
- •3.3 Алгоритмы управления судовыми электроэнергетическими системами
- •4 Микропроцессорная система управления судовой электростанции Delomatic
- •4.1. Структура и режимы работы системы
- •4.2 Функции управления генераторными агрегатами и электростанцией
- •4.2.1 Пуск и синхронизация генераторов
- •4.2.2 Регулирование частоты и распределение активной нагрузки
- •4.2.3 Остановка генераторного агрегата
- •4.2.4 Поддержание дг в горячем резерве
- •4.2.5 Пуск и остановка генератора по нагрузке на грщ
- •4.2.6 Определение очереди генераторов
- •4.2.7 Функции электростанции при обесточивании
- •4.2.8 Включение мощных потребителей
- •4.3 Функции контроля и защиты генераторных агрегатов
- •4.3.1 Контроль и защита шин грщ
- •4.3.2 Перегрузка генератора по току
- •4.3.3 Защита от обратной мощности
- •4.3.4 Защита от перегрузки по мощности
- •4.3.5 Защита от коротких замыканий
- •4.3.6 Отключение групп неответственных потребителей
- •Список рекомендуемой литературы
- •Автоматизированные судовые электроэнергетические системы
- •Часть 2 «Автоматизация системы управления сээс»
- •98309 Г. Керчь, Орджоникидзе, 82.
1.1.3 Системы возбуждения и автоматического регулирования напряжения синхронных генераторов (сварн)
На величину напряжения судовых синхронных генераторов влияют три фактора:
частота вращения ПД (дизеля, турбины);
изменение тока нагрузки генератора;
нагрев при работе обмоток статора и ротора генератора.
Рассмотрим действие этих причин более подробно.
При изменении частоты вращения ПД изменяются сразу два параметра синхронного генератора:
частота тока генератора
f
=
.
ЭДС обмотки статора генератора
Е = 4,44 f w Ф,
где р – число пар полюсов на роторе генератора (величина постоянная);
n – частота вращения приводного двигателя генератора, об/мин;
f – частота переменного тока;
w – число витков фазной обмотки (величина постоянная);
Ф – магнитный поток возбуждения генератора.
Из приведенных формул следует, что при уменьшении частоты вращения ПД уменьшаются частота тока генератора, его ЭДС, а значит, и напряжение.
Основными приемниками электроэнергии на судах являются асинхронные двигатели. Они создают для синхронных генераторов активно-индуктивную нагрузку.
При увеличении тока нагрузки активная составляющая увеличивает тормозной электромагнитный момент генератора, что приведет к уменьшению скорости ПД и снижению напряжения СГ; индуктивная составляющая ослабляет магнитный поток генератора, что также приводит к уменьшению его напряжения.
Таким образом, при набросе нагрузки каждая составляющая тока нагрузки снижает напряжение генератора.
При работе генератора его две обмотки - обмотка статора и обмотка возбуждения (на роторе), нагреваются, потому сопротивление обмоток увеличивается. В результате увеличивается падение напряжения на активном сопротивлении обмотки статора, а также и уменьшается ток возбуждения. В обоих случаях напряжение генератора уменьшается.
Современные АРЧ и АРН позволяют успешно компенсировать действие причин, вызывающих изменение напряжения генераторов. При этом, в случае, если действие каких-либо причин не в состоянии компенсировать АРЧ, это делает АРН.
Например, если АРЧ дизеля (турбины) работает ненадежно, имеющийся в схеме АРН генератора узел частотной коррекции изменяет в нужном направлении ток возбуждения генератора, поэтому напряжение остается стабильным. Так, в случае, если частота вращения приводного двигателя генератора меньше номинальной, что приводит к уменьшению частоты тока и напряжения генератора, этот узел увеличивает ток возбуждения и тем самым восстанавливает напряжение.
Стабилизацию напряжения при изменении тока нагрузки по величине и характеру обеспечивает одновременное действие АРЧ и АРН.
Например, при набросе нагрузки на генератор АРЧ увеличивает подачу топлива, компенсируя увеличение тормозного электромагнитного момента генератора и стабилизируя частоту тока, а АРН увеличивает ток возбуждения генератора, восстанавливая напряжение до номинального.
Стабилизацию напряжения при нагреве генератора обеспечивается при помощи узла температурной компенсации в составе АРН (см. ниже). При нагреве этот узел автоматически увеличивает ток возбуждения генератора, восстанавливая напряжение до номинального.