- •Содержание
- •1. Введение
- •Предмет гидравлики и краткая история её развития.
- •Понятие жидкости. Реальная и идеальная жидкости
- •Метод гидравлических исследований
- •Силы, действующие на жидкость. Понятие давления
- •Основные свойства капельных жидкостей
- •Гидростатика Гидростатическое давление и его свойство
- •Основное уравнение гидростатики
- •Дифференциальные уравнения равновесия жидкости и их интегрирование для простейшего случая
- •Пьезометрическая высота. Вакуум. Измерение давления
- •Сила давления жидкости на плоскую стенку
- •Сила давления жидкости на криволинейные стенки. Плавание тел
- •Кинематика Понятие о движении жидкости как непрерывной деформации сплошной материальной среды
- •Установившееся и неустановившееся течение жидкости
- •Линии токов жидкости и вихревые линии. Плавно и резко изменяющееся движение
- •Общие уравнения сплошной среды Уравнение неразрывности
- •Уравнение Бернулли
- •Геометрическая и энергетическая интерпретация уравнения Бернулли
- •Потери напора при установившемся движении. Влияние различных факторов на движение жидкости
- •Понятие о подобных потоках и критериях подобия
- •Числа Рейнольдса, Фруда, Эйлера, Вебера
- •Понятие о гидравлических сопротивлениях, виды потерь напора (местные и по длине)
- •Общая формула для потерь напора по длине при установившемся равномерном движении жидкости. Коэффициент Дарси
- •Основное уравнение равномерного движения
- •Касательные напряжения. Обобщённый закон Ньютона
- •Ламинарный и турбулентный режимы движения жидкости. Критическое число Рейнольдса
- •Пульсации скоростей при турбулентном режиме. Мгновенная и местная осреднённые скорости
- •Потери напора по длине при равномерном ламинарном движении жидкости
- •Распределение скоростей по живому сечению в цилиндрической трубе при ламинарном режиме. Коэффициент Дарси при ламинарном течении
- •Потери напора при равномерном турбулентном движении жидкости
- •Механизм турбуллизации потока: процесс перемешивания жидкости, ядро течения и пристенный слой
- •Коэффициент Дарси при турбулентном движении жидкости, экспериментальные методы его определения
- •График Никурадзе
- •Местные сопротивления, основные их виды
- •2. Объемные гидромашины.
- •2.1 Понятие объемной гидромашины. Насосы, гидродвигатели.
- •2.2 Величины характеризующие рабочий процесс огм.
- •2.3 Роторные гидромашины. Классификация.
- •3. Основные сведения об оъемном гидроприводе.
- •3.1 Назначения и основные свойства
- •3.2 Основные параметры гидрооборудования
- •3.3 Основные режимы работы и условия эксплуатации гидрооборудования.
Гидростатика Гидростатическое давление и его свойство
Гидростатикой называется раздел гидравлики, в котором рассматриваются законы равновесия жидкости и их практические приложения.
Как следует из гл. 1, жидкости практически не способны сопротивляться растяжению, а в неподвижных жидкостях не действуют касательные силы. Поэтому на неподвижную жидкость из поверхностных сил могут действовать только силы давления; причем на внешней поверхности рассматриваемого объема жидкости силы давления всегда направлены по нормали внутрь объема жидкости и, следовательно, являются сжимающими. Под внешней поверхностью жидкости понимают не только поверхность раздела жидкости с газообразной средой или твердыми стенками, но и поверхность объема, мысленно выделяемого из общего объема жидкости.
Таким образом, в неподвижной жидкости возможен лишь один вид напряжения напряжение сжатия, т. е. гидростатическое давление.
Рассмотрим основное свойство гидростатического давления: в любой точке жидкости гидростатическое давление не зависит от ориентировки площадки, на которую оно действует, т. е. от углов ее наклона по отношению к координатным осям.
Для
доказательства этого свойства выделим
в неподвижной жидкости элементарный
объем в форме тетраэдра с ребрами,
параллельными координатным осям и
соответственно равными
,
и
(рис.2.1).
Пусть внутри выделенного объема на
жидкость действует единичная массовая
сила, составляющие которой равны
,
и
.
Обозначим через
гидростатическое давление, действующее
на грань, нормальную к оси
,
через
—
давление
на грань, нормальную к оси
,
и
т. д. Гидростатическое давление,
действующее на наклонную грань, обозначим
через
,
а
площадь этой грани через
.
Составим уравнение равновесия выделенного объема жидкости сначала в направлении оси , учитывая при этом, что все силы направлены по нормалям к соответствующим площадкам внутрь объема жидкости.
Рис. 1.4 Элементарный объем в форме тетраэдра с ребрами, параллельными координатным осям и соответственно равными , и
Проекция сил давления на ось :
Масса
жидкости в тетраэдре равна произведению
ее объема на плотность, т. е.
,
следовательно,
массовая сила, действующая на тетраэдр
вдоль оси
,
составляет
.
Уравнение равновесия тетраэдра запишем в виде:
.
Разделив
это уравнение на площадь
,
которая
равна площади проекции наклонной грани
на плоскость
,
т.
е.
,
получим
При стремлении размеров тетраэдра к нулю последний член уравнения, содержащий множитель , также стремится к нулю, а давления и остаются величинами конечными. Следовательно, в пределе получим
Аналогично
составляя уравнения равновесия вдоль
осей
и
,
находим
,
или
(2.1)
Так как размеры тетраэдра , и взяты произвольно, то и наклон площадки произволен и, следовательно, в пределе при стягивании тетраэдра в точку давление в этой точке по всем направлениям будет одинаково. Это положение можно легко свойства гидростатического давления доказать, основываясь на формулах сопротивления материалов для напряжений при сжатии по двум и трем взаимно перпендикулярным направлениям. Для этого положим в указанных формулах касательное напряжение равным нулю, в результате чего получим
.
Рассмотренное свойство давления в неподвижной жидкости имеет место также при движении невязкой жидкости. При движении же реальной жидкости возникают касательные напряжения, вследствие чего давление в реальной жидкости указанным свойством, строго говоря, не обладает.
