- •Содержание
- •1. Введение
- •Предмет гидравлики и краткая история её развития.
- •Понятие жидкости. Реальная и идеальная жидкости
- •Метод гидравлических исследований
- •Силы, действующие на жидкость. Понятие давления
- •Основные свойства капельных жидкостей
- •Гидростатика Гидростатическое давление и его свойство
- •Основное уравнение гидростатики
- •Дифференциальные уравнения равновесия жидкости и их интегрирование для простейшего случая
- •Пьезометрическая высота. Вакуум. Измерение давления
- •Сила давления жидкости на плоскую стенку
- •Сила давления жидкости на криволинейные стенки. Плавание тел
- •Кинематика Понятие о движении жидкости как непрерывной деформации сплошной материальной среды
- •Установившееся и неустановившееся течение жидкости
- •Линии токов жидкости и вихревые линии. Плавно и резко изменяющееся движение
- •Общие уравнения сплошной среды Уравнение неразрывности
- •Уравнение Бернулли
- •Геометрическая и энергетическая интерпретация уравнения Бернулли
- •Потери напора при установившемся движении. Влияние различных факторов на движение жидкости
- •Понятие о подобных потоках и критериях подобия
- •Числа Рейнольдса, Фруда, Эйлера, Вебера
- •Понятие о гидравлических сопротивлениях, виды потерь напора (местные и по длине)
- •Общая формула для потерь напора по длине при установившемся равномерном движении жидкости. Коэффициент Дарси
- •Основное уравнение равномерного движения
- •Касательные напряжения. Обобщённый закон Ньютона
- •Ламинарный и турбулентный режимы движения жидкости. Критическое число Рейнольдса
- •Пульсации скоростей при турбулентном режиме. Мгновенная и местная осреднённые скорости
- •Потери напора по длине при равномерном ламинарном движении жидкости
- •Распределение скоростей по живому сечению в цилиндрической трубе при ламинарном режиме. Коэффициент Дарси при ламинарном течении
- •Потери напора при равномерном турбулентном движении жидкости
- •Механизм турбуллизации потока: процесс перемешивания жидкости, ядро течения и пристенный слой
- •Коэффициент Дарси при турбулентном движении жидкости, экспериментальные методы его определения
- •График Никурадзе
- •Местные сопротивления, основные их виды
- •2. Объемные гидромашины.
- •2.1 Понятие объемной гидромашины. Насосы, гидродвигатели.
- •2.2 Величины характеризующие рабочий процесс огм.
- •2.3 Роторные гидромашины. Классификация.
- •3. Основные сведения об оъемном гидроприводе.
- •3.1 Назначения и основные свойства
- •3.2 Основные параметры гидрооборудования
- •3.3 Основные режимы работы и условия эксплуатации гидрооборудования.
2.3 Роторные гидромашины. Классификация.
К насосам, применяемым в гидроприводах и других гидросистемах, предъявляют высокие требования, основными из которых являются: малая удельная масса и объем, приходящиеся на единицу мощности, высокий КПД, возможность регулирования и реверса подачи, а также высокая быстроходность и большая надежность. Этим требованиям наиболее полно удовлетворяют роторные насосы.
Как указывалось выше, к роторным относятся объемные насосы с вращательным или вращательно-поступательным движением рабо чих органов — вытеснителей. Жидкость в этих насосах вытесняется в результате вращательного (в шестеренных и винтовых насосах) или вращательного и одновременно возвратно-поступательного движения вытеснителей относительно ротора (в роторно-поршневых л пластинчатых насосах). Особенностью рабочего процесса таких насосов является и то, что при вращении ротора рабочие камеры переносятся из полости всасывания в полость нагнетания и обратно. Перенос рабочих камер с жидкостью делает излишними всасывающие и нагнетательные клапаны.
Отсутствие всасывающих и нагнетательных клапанов в роторных насосах является основной конструктивной особенностью, которая отличает их от поршневых насосов.
Роторный насос обычно состоит из трех основных частей: статора (неподвижного корпуса), ротора, жестко связанного с валом насоса и вытеснителя (одного или нескольких) *.
Рабочий процесс роторного насоса складывается из трех этапов: заполнение рабочих камер жидкостью; замыкание (изоляции) рабочих камер и их перенос; вытеснение жидкости из рабочих камер.
Основными свойствами роторных насосов, вытекающими из специфики их рабочего процесса и отличающими их от поршневых насосов являются следующие.
Обратимость, т. е. способность роторных насосов работать в качестве гидродвигателей (гидромоторов). Это означает, что жидкость, подводимая к насосу под давлением, заставляет вращаться ротор и вал. Поршневые насосы этой способностью не обладают.
Большая быстроходность. Максимально допустимые значения частоты вращения для роторных насосов п = (2-^-5) 103 об/мин, причем нижний предел соответствует большим насосам, а верхний —малым. Для поршневых насосов эти значения в несколько раз меньше.
Способность работать только на чистых (отфильтрованных и не содержащих абразивных и металлических частиц), неагрессивных и смазывающих жидкостях. Эти требования к жидкости обусловлены малыми зазорами в роторном насосе и трением между обработанными по высшим классам точности и чистоты поверхностями статора, ротора и вытеснителей.
Если первые два свойства роторных насосов являются их преимуществами, то третье свойство ограничивает применение этих насосов. Работа насосов на воде исключается, так как вода вызывает коррозию и ведет к быстрому изнашиванию рабочих органов. Рассмотрим классификацию роторных насосов, соответствующую ГОСТ 17398.72 (рис. 3.18).
По характеру движения вытеснителей роторные насосы разделяют на роторно-вращательные и роторно-поступательные; в первых рабочие органы совершают лишь вращательное движение, а во вторых одновременно с вращательным еще и возвратно-поступательное движение относительно ротора.
Роторно-вращательные насосы разделяют на зубчатые и винтовые. В зубчатых насосах ротор и вытеснитель имеют форму зубчатых колес, а жидкость перемещается в плоскости их вращения. В винтовых насосах ротор имеет форму винта, который одновременно выполняет функцию вытеснителя, а жидкость в насосе перемещается вдоль осей вращения винтов. Основной разновидностью зубчатых насосов являются шестеренные.
К роторно-поступательным относятся шиберные (в основном пластинчатые) и роторно-поршневые насосы. Различие между ними заключается не только в форме вытеснителей (пластин и поршней) и характере движения жидкости в насосе, но и в способе ограничения (образования) рабочих камер. Если в пластинчатом насосе рабочие камеры ограничиваются двумя соседними вытеснителями (пластинами) и поверхностями ротора и статора, то в роторно-поршневых насосах они образованы внутри ротора и замыкаются вытеснителями.
Роторно-поршневые насосы по расположению рабочих камер делятся на радиально- и аксиально-поршневые.
