Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Геометрия ответы.docx
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
1.84 Mб
Скачать

2. Подобие сохраняет углы между полупрямыми

  1. Подобие переводит плоскости в плоскости.

Две фигуры называются подобными, если они переводятся одна в другую преобразованием подобия.

33. Группа подобия и ее подгруппы.

Группа преобразований подобия и её подгруппы

Теорема1. Множество всех преобразований подобия плоскости есть группа преобразований,называемая группой подобий.

Доказательство.

Если и -преобразования подобия с коэффициентами и ,то -преобразования подобия с коэффициентом .Действительно является преобразованием плоскости.Докажем, что для любых двух точек Mи Nи их образов , Выполняется равенство .Обозначим и ,тогда , .По основному свойству преобразования подобия , .Поэтому и композиция является преобразованием подобия.

Пусть –преобразование подобия плоскости.Так как изменяет всё расстояние в отношение ,то обратное к нему преобразование изменяет все расстояния в отношении .

Следовательно, - преобразование подобия с коэффициентом .

Оба условия и выполняются.Следовательно,множество всех преобразований подобия является подгруппой группы всех преобразований плоскости, а,значит, и группой.

Определение.Множество всех подобных между собой фигур называется формой.

Теорема3. Подгруппами группы подобий плоскости являются:

Группа преобразований подобия первого рода;

Группа движений и все её подгруппы;

Группа гомотетий и параллельных переносов;

Группа гомотетий с одним и тем же центром.

34. Аффинные преобразования в пространстве

Для выполнения пространственных построений, аналогично двумерной задаче, три координаты точки (x, y, z) заменяются четверкой чисел (x, y, z, 1). Это дает возможность воспользоваться матричной записью и в более сложных трехмерных задачах.

Любое аффинное преобразование в трехмерном пространстве может быть представлено в виде суперпозиции вращений, растяжений, отражений и переносов. Математически все преобразования сводятся к перемножению матриц четвертого порядка. Например, матрица вращения вокруг оси абсцисс на угол j имеет вид:

.

Виды проецирования

Изображение трехмерных объектов на картинной плоскости связано с еще одной геометрической операцией – проецированием при помощи пучка прямых.

В компьютерной графике применяется несколько различных видов проецирования. Наиболее часто используется параллельное и центральное проецирование.

Для получения проекций объекта на картинную плоскость необходимо провести через каждую его точку прямую из заданного проецирующего пучка и затем найти координаты точки пересечения этой прямой с плоскостью изображения. В случае центрального проецирования все прямые исходят из одной точки – центра пучка. При параллельном проецировании считается, что центр пучка расположен в бесконечности (рис. 4). Математически операция проецирования также сводится к перемножению соответствующих матриц.

Рис. 4

35. Движение (в геометрии)

Движение в геометрии, преобразования пространства, сохраняющие свойства фигур (размеры, форму и др. ) Понятие Д. сформировалось путем абстракции реальных перемещении твердых тел. Д. евклидова пространства — геометрическое преобразованиепространства, сохраняющее расстояния между точками. Д. называют собственным или несобственным в зависимости от того, сохраняет ли оно или меняет ориентацию, Д. есть ортогональное преобразование.

Собственное Д. на плоскости можетбыть задано в прямоугольной системе координат (х, у) посредством следующих формул:

х; = xcosj — ysinj + a,

у; = xsinj + ycosj + b,

показывающих, что совокупность всех собственных Д. на плоскости зависит от трёх параметров а, b и j, которые характеризуют соответственно параллельный перенос плоскости на вектор (а, b) и её поворот вокруг начала координат на угол j. Всякое собственное Д. может быть представлено либо как параллельный перенос, либо как вращение вокруг некоторой точки. Любое несобственное Д. представимо в виде произведения (последовательного осуществления) параллельного переноса вдоль некоторого направления и симметрии относительно прямой, имеющей то же самое направление. Собственное Д. в пространстве есть или вращение вокруг оси, или параллельный перенос, или же может быть представлено в виде винтового движения (вращения вокруг оси и параллельного переноса в направлении этой оси).

Несобственное Д. в пространстве есть либо симметрия относительно плоскости, либо может быть представлено в виде произведения симметрии относительно плоскости на вращение вокруг оси, перпендикулярной этой плоскости, либо в виде произведения симметрии относительно плоскости на перенос в направлении вектора, параллельного этой плоскости, Д. в пространстве аналитически может быть представлено посредством линейного преобразования с ортогональной матрицей, определитель которой равен 1 или -1, в зависимости от того, является Д. собственным или несобственным, Понятие Д. переносится в римановы пространства, в пространства аффинной связности. Важную роль понятие Д. играет в римановых пространствах теории относительности (сильная асимметрия гравитационных полей накладывает ограничения на движения твёрдых тел в таких пространствах). Д. может быть принято в качестве основного понятия при аксиоматическом построении геометрии. В этом случае вместо аксиом конгруэнтности вводятся аксиомы Д. Конгруэнтность отрезков, углов и др. фигур определяется через понятие Д. (фигуры называются конгруэнтными, если одна переходит в другую при помощи некоторого Д.). Совокупность Д. образует группу.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]