
- •2. Расстояние между двумя точками. Деление отрезка в данном отношении
- •18. Прямая в пространстве. Различные способы задания прямой в пространстве. Уравнение прямой заданной точкой и направляющим вектором.
- •19. Уравнение прямой проходящей через две точки. Параметрические уравнения прямой.
- •23. Угол между плоскостями
- •24. Вычисление расстояния между двумя прямыми.
- •25. Отображение и преобразование множеств (инъекция, сюръекция, биекция и их примеры).
- •1. Симметрия центральная
- •3. Параллельный перенос .
- •26. Группа преобразований множества. Подгруппа группы преобразований
- •27/ Движение плоскости
- •Теорема. Основное свойстве движений.
- •28/ Свойства движений.
- •29/ Два вида движений
- •30. Инвариантные точки и прямые. Классификация движений
- •31. Группа движений плоскости и ее подгруппы
- •32. Преобразование подобия
- •2. Подобие сохраняет углы между полупрямыми
- •Подобие переводит плоскости в плоскости.
- •33. Группа подобия и ее подгруппы.
- •34. Аффинные преобразования в пространстве
- •35. Движение (в геометрии)
- •36. Два вида движений. Инвариантные точки, прямые и плоскости
- •38. Преобразование подобия пространства
- •Аффинные преобразования пространства.
- •Группа аффинных преобразований и ее подгруппы. Групповой подход к геометрии.
- •41. Поверхности второго порядка. Метод сечений
- •47, Прямолинейные образующие поверхностей второго порядка
- •53. Евклидовы пространства
- •54. Аффинное -мерное пространство
2. Подобие сохраняет углы между полупрямыми
Подобие переводит плоскости в плоскости.
Две фигуры называются подобными, если они переводятся одна в другую преобразованием подобия.
33. Группа подобия и ее подгруппы.
Группа преобразований подобия и её подгруппы
Теорема1. Множество всех преобразований подобия плоскости есть группа преобразований,называемая группой подобий.
Доказательство.
Если
и
-преобразования
подобия с коэффициентами
и
,то
-преобразования
подобия с коэффициентом
.Действительно
является
преобразованием плоскости.Докажем, что
для любых двух точек Mи Nи их
образов
,
Выполняется
равенство
.Обозначим
и
,тогда
,
.По
основному свойству преобразования
подобия
,
.Поэтому
и
композиция
является
преобразованием подобия.
Пусть
–преобразование
подобия плоскости.Так как
изменяет
всё расстояние в отношение
,то
обратное к нему преобразование
изменяет
все расстояния в отношении
.
Следовательно, - преобразование подобия с коэффициентом .
Оба условия и выполняются.Следовательно,множество всех преобразований подобия является подгруппой группы всех преобразований плоскости, а,значит, и группой.
Определение.Множество всех подобных между собой фигур называется формой.
Теорема3. Подгруппами группы подобий плоскости являются:
Группа преобразований подобия первого рода;
Группа движений и все её подгруппы;
Группа гомотетий и параллельных переносов;
Группа гомотетий с одним и тем же центром.
34. Аффинные преобразования в пространстве
Для выполнения пространственных построений, аналогично двумерной задаче, три координаты точки (x, y, z) заменяются четверкой чисел (x, y, z, 1). Это дает возможность воспользоваться матричной записью и в более сложных трехмерных задачах.
Любое аффинное преобразование в трехмерном пространстве может быть представлено в виде суперпозиции вращений, растяжений, отражений и переносов. Математически все преобразования сводятся к перемножению матриц четвертого порядка. Например, матрица вращения вокруг оси абсцисс на угол j имеет вид:
.
Виды проецирования
Изображение трехмерных объектов на картинной плоскости связано с еще одной геометрической операцией – проецированием при помощи пучка прямых.
В компьютерной графике применяется несколько различных видов проецирования. Наиболее часто используется параллельное и центральное проецирование.
Для получения проекций объекта на картинную плоскость необходимо провести через каждую его точку прямую из заданного проецирующего пучка и затем найти координаты точки пересечения этой прямой с плоскостью изображения. В случае центрального проецирования все прямые исходят из одной точки – центра пучка. При параллельном проецировании считается, что центр пучка расположен в бесконечности (рис. 4). Математически операция проецирования также сводится к перемножению соответствующих матриц.
Рис. 4
35. Движение (в геометрии)
Движение в геометрии, преобразования пространства, сохраняющие свойства фигур (размеры, форму и др. ) Понятие Д. сформировалось путем абстракции реальных перемещении твердых тел. Д. евклидова пространства — геометрическое преобразованиепространства, сохраняющее расстояния между точками. Д. называют собственным или несобственным в зависимости от того, сохраняет ли оно или меняет ориентацию, Д. есть ортогональное преобразование.
Собственное Д. на плоскости можетбыть задано в прямоугольной системе координат (х, у) посредством следующих формул:
х; = xcosj — ysinj + a,
у; = xsinj + ycosj + b,
показывающих, что совокупность всех собственных Д. на плоскости зависит от трёх параметров а, b и j, которые характеризуют соответственно параллельный перенос плоскости на вектор (а, b) и её поворот вокруг начала координат на угол j. Всякое собственное Д. может быть представлено либо как параллельный перенос, либо как вращение вокруг некоторой точки. Любое несобственное Д. представимо в виде произведения (последовательного осуществления) параллельного переноса вдоль некоторого направления и симметрии относительно прямой, имеющей то же самое направление. Собственное Д. в пространстве есть или вращение вокруг оси, или параллельный перенос, или же может быть представлено в виде винтового движения (вращения вокруг оси и параллельного переноса в направлении этой оси).
Несобственное Д. в пространстве есть либо симметрия относительно плоскости, либо может быть представлено в виде произведения симметрии относительно плоскости на вращение вокруг оси, перпендикулярной этой плоскости, либо в виде произведения симметрии относительно плоскости на перенос в направлении вектора, параллельного этой плоскости, Д. в пространстве аналитически может быть представлено посредством линейного преобразования с ортогональной матрицей, определитель которой равен 1 или -1, в зависимости от того, является Д. собственным или несобственным, Понятие Д. переносится в римановы пространства, в пространства аффинной связности. Важную роль понятие Д. играет в римановых пространствах теории относительности (сильная асимметрия гравитационных полей накладывает ограничения на движения твёрдых тел в таких пространствах). Д. может быть принято в качестве основного понятия при аксиоматическом построении геометрии. В этом случае вместо аксиом конгруэнтности вводятся аксиомы Д. Конгруэнтность отрезков, углов и др. фигур определяется через понятие Д. (фигуры называются конгруэнтными, если одна переходит в другую при помощи некоторого Д.). Совокупность Д. образует группу.