
- •Консервативні і дисипативні системи. Консервативні і дисипативні системи
- •Закон збереження енергії в термодинаміці
- •Властивості перетворень Лоренца
- •22.Причини невідповідності механіки Ньютона. Спеціальна теорія відносності. Постулати Ейнштейна
- •Постулати спеціальної теорії відносності
- •Постулаты Эйнштейна
- •23. Причинність у класичній фізиці.
- •24. Основні поняття молекулярної фізики та термодинаміки
- •Связь между газовыми константами
- •26 Робота при ізопроцесах
- •Перший закон термодинаміки
- •29. Енергія, робота, теплота
- •Перший закон термодинаміки
- •31.Зворотні і незворотні процеси. Ентропія
- •32. Температурні цикли. Цикл Карно
- •33.Статистичне тлумачення другого закону термодинаміки
Перший закон термодинаміки
Зміна внутрішньої енергії закритої системи, яка відбувається в рівноважному процесі переходу системи із стану 1 в стан 2, дорівнює сумі роботи, зробленої над системою зовнішніми силами, і кількості теплоти, наданої системі: ΔU = A' + Q. Робота здійснена системою над зовнішніми тілами в процесі 1->2 (Назвемо її просто А) A=-A', тоді закон приймає вигляд:
.
Кількість теплоти, що надається системі, витрачається на зміну внутрішньої енергії системи і на здійснення системою роботи проти зовнішніх сил.
Для елементарної кількості теплоти δQ; елементарної роботи δA і малої зміни dU внутрішньої енергії перший закон термодинаміки має вигляд:
Вíчний двиѓун (perpetuum mobile) — ідеальний двигун, задуманий так, що, будучи запущеним один раз, буде працювати постійно і не вимагатиме додаткового надходження енергії. Подібний пристрій вступає в протиріччя з двома законами термодинаміки:
енергія не може бути ні створена, ні зруйнована (закон збереження енергії)
теплота не може перетікати від холоднішого об'єкта до теплішого.
У результаті всім реальним двигунам потрібне постійне постачання енергією, і жодна теплова машина не може перетворювати все тепло в корисну роботу.
Історично розрізняють різни типи вічних двигунів.
Вічний двигун першого роду за задумом повинен був би виконувати роботу, не отримуючи енергії. Він суперечить закону збереження енергії
29. Енергія, робота, теплота
Эне́ргия (др.-греч. ἐνέργεια — «действие, деятельность, сила, мощь») — скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие. Введение понятия энергии удобно тем, что в случае, если физическая система является замкнутой, то её энергия сохраняется во времени. Это утверждение носит название закона сохранения энергии. Понятие введено Аристотелем в трактате «Физика».
С фундаментальной точки зрения энергия представляет собой интеграл движения (то есть сохраняющуюся при движении величину), связанный, согласно теореме Нётер, с однородностью времени. Таким образом, введение понятия энергии как физической величины целесообразно только в том случае, если рассматриваемая физическая система однородна во времени.
Энергия является мерой способности физической системы совершить работу, поэтому количественно энергия и работа выражаются в одних единицах.Механическая работа численно равна изменению механической энергии.
ТЕПЛОТА, кинетическая часть внутренней энергии вещества, определяемая интенсивным хаотическим движением молекул и атомов, из которых это вещество состоит. Мерой интенсивности движения молекул является температура. Количество теплоты, которым обладает тело при данной температуре, зависит от его массы; например, при одной и той же температуре в большой чашке с водой заключается больше теплоты, чем в маленькой, а в ведре с холодной водой его может быть больше, чем в чашке с горячей водой (хотя температура воды в ведре и ниже). Коли́чество теплоты́ — энергия, которую получает или теряет тело при теплопередаче. Количество теплоты является одной из основных термодинамических величин.
Количество теплоты является функцией процесса, а не функцией состояния, то есть количество теплоты, полученное системой, зависит от способа, которым она была приведена в текущее состояние.
Единица измерения в Международной системе единиц (СИ): Джоуль.
Робо́та - фізична величина, яка визначає енергетичні затрати при переміщенні фізичного тіла, чи його деформації.
Робота зазвичай позначається латинською літерою A (від нім. Arbeit), в англомовній літературі - W (від англ. Work), й має розмірність енергії. У системі СІ робота вимірюється в Джоулях, у системі СГС - у ергах.
При
малому переміщенні фізичного
тіла
під
дією сили
говорять,
що над тілом здійснюється робота
,
де
-
кут між напрямком сили й напрямком
переміщення.
Згідно з цією формулою роботу здійснює тільки складова сили, яка паралельна переміщенню. Сила, яка перпендикулярна переміщеню, роботи не здійснює.
У випадку, коли тіло рухається по криволінійному контуру C, для знаходження роботи потрібно проінтегрувати наведений вище вираз вздовж контура:
Якщо
сила
потенціальна,
то робота залежить лише від різниці
значень потенціалу
в початоковій і кінцевій точках і не
залежить від траєкторії,
по якій тіло рухалося між цими двома
точками.
У термодинаміці при зміні об'єму тіла на величину dV під дією тиску P над тілом виконується робота
.
Пе́рший зако́н термодина́міки — одне з основних положень термодинаміки, є, по суті, законом збереження енергії у застосуванні до термодинамічних процесів. Перший закон термодинаміки сформульований в середині 19 століття в результаті робіт Саді Карно, Юліуса фон Маєра, Джеймса Прескотта Джоуля і Германа фон Гельмгольца. Перший початок термодинаміки часто формулюють як неможливість існування вічного двигуна 1-го роду, який здійснював би роботу, не черпаючи енергію з якого-небудь джерела.