Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Биохимия.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.29 Mб
Скачать

Пути использования энергии переноса электронов.

При переносе пары электронов происходит изменение свободной энергии и эта энергия используется по двум путям:

  1. Энергия переноса электронов используется на синтез АТФ.

  2. Энергия переноса электронов используется для выработки тепла.

При переносе пары электронов по дыхательной цепи происходит изменение свободной энергии, равная 52,6 ккал. Этой энергии достаточно для синтеза 3 молекул АТФ. Синтез трех молекул АТФ в стандартных условиях требует затраты ккал.

В трех пунктах переноса электронов происходит наибольшее изменение свободной энергии и эти пункты называются пунктами сопряжения тканевого дыхания и окислительного фосфорилирования.

Окислительное фосфорилирование это процесс ресинтеза АТФ из АДФ и Фн, сопряженный с тканевым дыханием.

Пункты сопряжения находятся на участках:

  1. НАД/ФАД

  2. ц в/ц с

  3. ц а/а3 О2

Пункты сопряжения постоянны, но их количество зависит от природы окисляемого субстрата.

При окисления НАД – зависимых субстратов имеет место 3 пункта сопряжения, т.е. выделяется 3АТФ, при окислении ФАД – зависимых субстратов имеет место 2 пункта сопряжения и выделяется 3 АТФ, при окислении цитохромзависимых субстратов, количество АТФ, зависит от того, на какой цитохром сбрасываются электроны: при сбросе электронов на цитохром b выделяется 2АТФ в процессе окислительного фосфорилирования, а на цитохром с – 1АТФ.

Коэффициент фосфорилирования – это соотношение Р/О как показатель сопряжения дыхания и фосфорилирования.

Было установлено, что при поглощении одного атома кислорода (или при переносе пары электронов от субстрата к кислороду) поглощается не один атом неорганического фосфата, а примерно три т.е. коэффициент Р/О примерно равен 3. Т.е. в дыхательной цепи имеется как минимум три пункта сопряжения, где неорганический фосфат участвует в образовании АТФ.

Процесс биологического окисления может не сопровождаться синтезом АТФ.

Окисление, не сопровождающееся синтезом АТФ, называется свободным окислением. В этом случае энергия выделяется в виде тепла. Это может наблюдаться при действии токсинов и сопровождается повышением температуры тела.

Причины нарушения биологического окисления.

  1. Недостаток субстратов окисления (углеводов, липидов, т.е. пищи).

  2. Нарушение работы ферментов в дыхательной цепи:

  1. Дефект апофермента (нарушен синтез белковой части фермента).

  2. Дефект кофермента (нарушение синтеза коферментов из-зи недостатка витаминов В2,В5, К).

  3. Недостаток кислорода.

  4. Действие ингибиторов.

Аминобарбитал ингибирует перенос протонов и электронов на участке НАД/ФАД, окисление НАДзависимых субстратов прекращается.

Антимицин ингибирует перенос электронов на участке цитохром b, цитохром с.

Цианады ингибируют перенос электронов на участке цитохромоксидазы/кислород.

При большинстве физиологических состояний перенос электронов сопряжен с окслительным фосфорилированием.

Ряд соединений может вызвать разобщение тканевого дыхания и окислительного фосфорилирования. Разобщителями этих процессов являются следующие соединения: 2,4 – динитрофенол, гормон щитовидной железы – тироксин, дикумарин и его производные, жирные кислоты.

Разобщение окислительного фосфорилирования и тканевого дыхания может быть биологически полезным. Разобщение представляет собой способ генерирования тепла для поддержания температуры тела у зимнеспящих животных и млекопитающих адаптированных к холоду. В качестве разобщителя выступают жирные кислоты, которые накапливаются в бурой жировой ткани. Такой бурый жир есть и у новорожденных детей, что позволяет поддерживать температуру тела при еще несовершенной системе терморегуляции.

У больных с гиперфункцией щитовидной железы отмечается повышение температуры тела, что обусловлено разобщением процессов тканевого дыхания и окислительного фосфорилирования, вызванного тироксином.

При недостатке кислорода в тканях процесс тканевого дыхания затруднен и в тканях протекает субстратное окисление.

Субстратное окисление – это процесс окисления, при котором конечным акцептором электронов является субстрат, а не кислород.

Субстратное окисление – это аварийный источник получения энергии при недостатке кислорода.

Недостаток кислорода (гипоксия) возникает в организме при физической работе, при подъеме в горы, опускании под воду, при заболеваниях органов дыхания, сердечно-сосудистой системы и кроветворной системы.

Субстратное окисление энергетически менее выгодно, чем тканевое дыхание, т.к. редокс-потенциалы субстратов отличаются незначительно.

В организме наряду с окислительным фосфорилированием процессом, дающим энергию является субстратное фосфорилирование.

Субстратное фосфорилирование – это процесс образования макроэргических соединений за счет макроэргических связей субстрата.

Важнейшим макроэргическим соединением является АТФ.

Энергия макроэргических связей аккумулируется в ряде соединений: креатинфосфат, 1,3-дифосфоглицерат, ГТФ и др.

Биологическое окисление

Тканевое дыхание Свободное окисление Субстратное окисление

Связано с Энергия

окислительным выделяется

фосфорилированием в виде тепла

Энергия выделяется

в виде АТФ

Фосфорилирование

Окислительное фосфорилирование Субстратное фосфорилирование

связано с мембранами митохондрий не связано с мембранами

митохондрий

Процесс

Ингибиторы тканевого дыхания

Разобщители тканевого дыхания и окислительного фосфорилирования

Ингибиторы синтеза АТФ

Аминобарбитал, ротенон, антимизин, цианиды

2,4-динитрофенол, жирные кислоты, дикумарин и его производные, тироксин

Антибиотики олигомицин, рутамицин

Ионофоры:

Валиномицин, грамицидин

Одно время пытались использовать некоторые разобщающие агенты для борьбы с ожирением за счет понижения эффективности синтеза АТФ. Но эти вещества оказались крайне токсичны, и потому от такого их применения отказались.

Существует еще группа веществ как ионофоры, т.е. переносчики

ионов. Это жирорастворимые вещества, способные связывать определенные ионы и переносить их через мембрану. Ионофоры отличаются от разобщителей тем, что ионофоры переносят через мембрану не ионы водорода, а какие-нибудь другие катионы. Например, токсичный антибиотик валиномицин образует жирорастворимый комплекс с ионами К+, легко проходящий через внутреннюю мембрану митохондрий, тогда как в отсутствие валиномицина ионы К+ проникают сквозь нее с трудом. Ионофор грамицидин облегчает проникновение ионов К+ и Na+.

Ионофоры и разобщители подавляют окислительное фосфорилирование, увеличивая проницаемость мембраны для ионов Н+, К+ или Na+.

Окислительное фосфорилирование

Ферменты ЦПЭ фиксированы в митохондриальной мембране и их действие характеризуется не только величиной, но и пространственной направленностью, т.е. действуют векторно.

Проявлением векторности является перенос ионов Н+ с внутренней стороны мембраны (со стороны матрикса) на наружную. С НАДН электроны переходят на ФМН, а протоны освобождаются с внутренней стороны мембраны. Протоны, необходимые для восстановления ФМН, поступают из матрикса. На следующем этапе электроны с ФМН Н2 переходят на убихинон, а протоны – в межмембранное пространство; убихинон получает протоны из матрикса и так далее. ЦПЭ работает как протонный насос, перекачивая ионы Н+ из матрикса на наружную сторону мембраны. В результате по сторонам мембраны возникает разность концентраций протонов и одновременно разность электрических потенциалов со знаком + на наружной повехности.

Электрохимический потенциал заставляет протоны двигаться в обратном направлении – с наружной поверхности внутрь. Движение протонов идет по протонным каналам, где располагается АТФ-аза, катализирующая реакщию:

АДФ + Н3РО4 = АТФ + Н2О

АТФ при участии транслоказы поступает из матрикса на наружную сторону мембраны, а затем в цитозоль.

Гипотеза Митчелла

Согласно этой гипотезе, цепь переноса электронов – насос, перекачивающий ионы Н+. Энергия, высвобождаемая при переносе электронов используется для перемещения ионов Н+ из митохондриального матрикса наружу, что приводит к возникновению электрохимического Н+- градиента сболее высокой концентрацией ионов Н+ в наружной водной фазе. Этот же процесс ведет к появлению трансмембранного электрического потенциала – наружная сторона мембраны оказывается электроположительной. Ионы Н+ из окружающей среды вновь устремляются внутрь, т.е. в митохондриальный матрикс, на этот раз по электрохимическому градиенту. Этот переход ионов Н+ из зоны с более высокой в зону с более низкой их концентрацией сопровождается выделением свободной энергии, за счет которой синтезируется АТФ.

Электрохимический Н+-градиент с более высокой концентрацией Н+ на наружной мембране.

Трансмембранный электрический потенциал – наружная мембрана заряжена положительно, а внутренняя – отрицательно.

Ионы Н+ из окружающей среды по электрическому градиенту идут внутрь митохондрии и этот процесс сопровождается выделением свободной энергии, которая идет на синтез АТФ.