- •П.И.Пилов гравитационная сепарация полезных ископаемых
- •Днепропетровск
- •Введение
- •Глава 1. Свойства минералов и жидких сред для гравитационной сепарации
- •1.1. Свойства минералов
- •1.2. Среды для гравитационной сепарации
- •1.3. Реологические свойства жидких сред
- •1.4. Дисперсные системы
- •1.5. Контрольные вопросы
- •Глава 2. Скорость движения минеральных частиц в жидкой среде
- •Уравнение движения частицы для таких условий:
- •2.2. Сопротивление среды. Диаграмма Релея
- •2.3. Решение уравнения свободного движения минеральной частицы в жидкой среде для первой автомодельной области
- •2.4. Решение уравнения свободного движения минеральной частицы в жидкой среде для второй автомодельной области
- •2.6. Стесненное движение монодисперсной твердой фазы в жидкой среде
- •2.7. Стесненное движение полидисперсной твердой фазы в жидкой среде
- •2.8. Контрольные вопросы
- •Глава 3. Турбулентный массоперенос
- •3.1. Характеристики турбулентного течения
- •3.2. Механизм переноса твердой фазы турбулентными потоками жидкости
- •3.3. Контрольные вопросы
- •Глава 4. Сепарационные эффекты в жидких средах
- •4.1. Кинетика достижения конечной скорости падения
- •4.2.Равновесное положение частиц из
- •4.3. Особенности движения частиц различной крупности
- •4.4. Особенности поведения частиц при осаждении в стесненных условиях
- •4.5. Осаждение частиц в неподвижной жидкости
- •4.6. Осаждение частиц в горизонтальном потоке жидкости
- •4.7. Осаждение частиц в вертикальном потоке
- •4.8. Распределение частиц в горизонтальном турбулентном потоке
- •4.9. Вертикальный турбулентный поток
- •4.10. Движение в криволинейных потоках
- •4.11. Контрольные вопросы
- •Глава 5. Сепарация в жидких средах
- •5.1. Сепарационные процессы
- •5.2. Разделительный признак при гравитационной
- •5.3. Сепарационные характеристики
- •5.4. Экспериментальное определение сепарационных характеристик
- •5.5. Контрольные вопросы
- •6. Процессы и аппараты гравитационной сепарации
- •6.1. Гидравлическая классификация
- •6.2. Сепарация в тяжелых средах
- •6.3.Отсадка
- •Погрешность разделения определяется средним вероятным отклонением, отнесенным к разности плотности разделения и плотности среды разделения, т.Е.
- •6.4. Сепарация в безнапорном потоке жидкости малой толщины
- •6.5. Контрольные вопросы
- •Содержание
3.3. Контрольные вопросы
Характеристики турбулентного течения.
Перечислите известные Вам полуэмпирические теории турбулентности и дайте им краткие характеристики.
Что такое путь смешения в полуэмпирических теориях турбулент6ности?
Чем отличается определение пути смешения в теории турбулентности Прандтля и Кармана?
Понятие коэффициента турбулентного переноса жидкости. Как он определяется?
Приведите уравнение одномерного турбулентного переноса твердой фазы для случая, когда массообмен между элементами турбулентности и окружающей средой отсутствует.
Приведите уравнение одномерного турбулентного переноса твердой фазы для случая, с массообменом между элементами турбулентности и окружающей средой.
Запишите формулу для коэффициента турбулентного переноса твердой фазы и поясните ее.
Глава 4. Сепарационные эффекты в жидких средах
4.1. Кинетика достижения конечной скорости падения
Зависимость
скорости движения частиц в жидкой среде
под действием силы тяжести от времени
движения получена при решении уравнения
движения для первой и второй автомодельных
областей. Из ее анализа следует, что при
любой начальной скорости частицы при
достигают конечной скорости. Если
принять допущение о том, что при
определенном допустимом расхождении
достигнутой и конечной скоростей процесс
разгона или торможения является
завершенным, то можно вычислить время
переходного процесса (рис.4.1).
Рис. 4.1. Кинетика достижения конечной скорости осаждения твердых части в жидкой среде.
Время переходного процесса зависит от отношения ускорения силы тяжести в жидкой среде g0 к конечной скорости падения v0, входящего в показатель экспоненты. Поэтому для частиц различной плотности и крупности время переходного процесса будет различным. Рассмотрим это утверждение на примере равнопадаемых частиц, т.е. когда для определенных частиц с различной крупностью и плотностью конечная скорость падения одинакова. В таком случае показатели экспоненты в уравнениях скорости этих частиц будут отличаться только величиной g0.
Как
известно, ускорение силы тяжести в
жидкой среде равно
.
Из этого следует, что при увеличении
плотности частиц значение ускорения
возрастает, а следовательно они раньше
достигают конечную скорость. Однако в
период разгона или торможения скорости
легких и тяжелых частиц будут отличаться
от их соотношения при установившемся
движении, и их равнопадаемость будет
нарушаться.
4.2.Равновесное положение частиц из
неоднородного вещества
У частиц из неоднородного вещества, например, у сростков, состоящих из минералов различной плотности, центр объема не совпадает с центром масс.
Рис. 4.2. Поведение частицы из неоднородного вещества: а) исходное положение; б) равновесное положение.
Точка приложения силы тяжести совпадает с центром масс, а точка приложения выталкивающей силы Архимеда совпадает с центром объема частицы (рис. 4.2а). В этом случае возникает пара сил и момент, который поворачивает частицу до достижения равновесного положения (рис. 4.2б), при котором действующие силы расположены на одной вертикали и момент этой пары сил становится равным нулю.
Если такая частица будет находиться в движущемся вертикальном потоке жидкости, то она будет каждый раз занимать новое равновесное положение при изменении скорости и направления потока. Это явление будет менять миделево сечение, а, следовательно, и значение силы сопротивления и скорости частицы относительно жидкой среды.
