- •Раздел 1. Вопросы по общепрофессиональным дисциплинам
- •1)Понятие программирования. Жизненный цикл по. Восходящее и нисходящее проектирование по.
- •2) Основные структуры программирования. Операторы языка си Базовые структуры программирования
- •3)Функции. Шаблоны функций, перегрузка функций.
- •4) Пользовательские типы данных: назначение, ввод-вывод.
- •5)Статические и динамическое распределение памяти.
- •6) Динамические структуры данных (стек, очередь, список).
- •7)Объектно-ориентированное программирование. Классы. Конструкторы. Деструкторы.
- •8)Паттерны проектирования и программирования
- •9) Общая классификация видов информационных технологий и их реализация в технических областях.
- •10)Процессы передачи, обработки и накопления данных в информационных системах.
- •11) Фон Неймановская архитектура вычислительных машин. Принципы фон Неймана. Состав и устройство персонального компьютера.
- •12)Чипсет и шинно-мостовая архитектура системной платы.
- •13)Микроархитектура процессоров Intel Core. Исполнение программного кода на основе конвейерной обработки
- •14)Архитектура оперативного запоминающего устройства на основе динамической памяти с произвольным доступом
- •15)Принцип работы электронной памяти различных типов. Параметры микросхем памяти.
- •16)Архитектура графической подсистемы. Принцип расчета трехмерного изображения. Рендеринг.
- •17)Структура и принцип действия накопителя на жестких магнитных дисках. Последовательная шина sata.
- •18)Структура и принцип действия оптических приводов cd и dvd.
- •19) Внутренние и внешние параллельные и последовательные компьютерные шины
- •20) Средства передачи информации – кабельные и беспроводные каналы связи
- •21)Основы теории управления. Общие принципы системной организации.
- •22)Рабочие операции и операции управления.
- •23 ) Характеристики объекта управления: устойчивость, управляемость, наблюдаемость.
- •24)Использование микропроцессоров и эвм в системах управления.
- •25)Общее информационное представление системы управления.
- •26)Понятие операционной системы, основные функции и назначение. Классификация ос.
- •27)Файловые системы: примеры, функции и назначение. Методы физической организации файлов
- •28) Архитектура операционной системы. Ядро и вспомогательные модули, функции и назначение. Загружаемые модули ядра.
- •29) Концепции построения структур хранилищ данных
15)Принцип работы электронной памяти различных типов. Параметры микросхем памяти.
SRAM
Статическая оперативная память с произвольным доступом (SRAM, static random access memory) — полупроводниковая оперативная память, в которой каждый двоичный или троичный разряд хранится в схеме с положительной обратной связью, позволяющей поддерживать состояние сигнала без постоянной перезаписи, необходимой в динамической памяти (DRAM). Тем не менее, сохранять данные без перезаписи SRAM может только пока есть питание, то есть SRAM остается энергозависимым типом памяти. Произвольный доступ (RAM — random access memory) — возможность выбирать для записи/чтения любой из битов (тритов) (чаще байтов (трайтов), зависит от особенностей конструкции), в отличие от памяти с последовательным доступом (SAM — sequental access memory).
Статическая память является наиболее производительным типом памяти. Микросхемы SRAM применяются для кэширования оперативной памяти, в которой используются микросхемы динамической памяти, а также для кэширования данных в механических устройствах хранения информации, в блоках памяти видеоадаптеров и т. д. Фактически, микросхемы SRAM используются там, где необходимый объем памяти не очень велик, но высоки требования к быстродействию, а раз так, то оправдано использование дорогостоящих микросхем.
Ячейки статической памяти реализуются на триггерах - элементах с двумя устойчивыми состояниями. По сравнению с динамической памятью эти ячейки более сложные и занимают больше места на кристалле, однако они проще в управлении и не требуют регенерации. Быстродействие и энергопотребление статической памяти определяется технологией изготовления и схемо-техникой запоминающих ячеек. Самая экономичная КМОП память (CMOS Memory) имеет время доступа более 100 наносекунд, но зато пригодна для длительного хранения информации при питании от маломощной батареи, что и применяется в памяти конфигурации PC. Самая быстродействующая статическая память имеет время доступа в несколько наносекунд, что позволяет ей работать на частоте системной шины процессора, не требуя от него тактов ожидания. Типовой объем памяти современных микросхем SRAM достигает 1 Мбит. Относительно высокая удельная стоимость хранения информации и энергопотребление при низкой плотности упаковки не позволяют использовать SRAM в качестве основной памяти компьютеров. В PC микросхемы SRAM в основном используются для построения внешнего (L2) кэша основной памяти..
Самое распространенное применение статической памяти - кэширование ОЗУ. На микросхемах статической памяти обычно строится внешний кэш, в котором используется архитектура прямого отображения или наборно-ассоциативная. Функции кэш-контроллера выполняет чипсет. Микросхемы хранения данных кэша организуются в банки, число микросхем в банке должно соответствовать разрядности системной шины процессора. Банк должен заполняться микросхемами одного объема, требуемое быстродействие микросхем зависит от частоты системной шины.
Кэш.
Кэш (англ. cache) — промежуточный буфер с быстрым доступом, содержащий информацию, которая может быть запрошена с наибольшей вероятностью. Доступ к данным в кэше идёт быстрее, чем выборка исходных данных из оперативной (ОЗУ) или более медленной внешней (жёсткий диск или твердотельный накопитель) памяти, за счёт чего уменьшается среднее время доступа и увеличивается общая производительность компьютерной системы.
Является одним из верхних уровней иерархии памяти. Кэш использует небольшую, но очень быструю память SRAM, которая хранит копию часто используемых данных из основной памяти. Если большая часть запросов в память будет обрабатываться кэшем, средняя задержка обращения к памяти будет приближаться к задержкам работы кэша.
Кэш центрального процессора разделён на несколько уровней. В универсальном процессоре в настоящее время число уровней может достигать 3. Кэш-память уровня N+1 как правило больше по размеру и медленнее по скорости доступа и передаче данных, чем кэш-память уровня N.
Самой быстрой памятью является кэш первого уровня — L1-cache. По сути, она является неотъемлемой частью процессора, поскольку расположена на одном с ним кристалле и входит в состав функциональных блоков. В современных процессорах обычно кэш L1 разделен на два кэша, кэш команд (инструкций) и кэш данных (Гарвардская архитектура). Большинство процессоров без L1 кэша не могут функционировать. L1 кэш работает на частоте процессора, и, в общем случае, обращение к нему может производиться каждый такт. Зачастую является возможным выполнять несколько операций чтения/записи одновременно. Латентность доступа обычно равна 2−4 тактам ядра. Объём обычно невелик — не более 128 Кбайт.
Вторым по быстродействию является L2-cache — кэш второго уровня, обычно он расположен либо на кристалле, как и L1. В старых процессорах — набор микросхем на системной плате. Объём L2 кэша от 128 Кбайт до 1−12 Мбайт. В современных многоядерных процессорах кэш второго уровня, находясь на том же кристалле, является памятью раздельного пользования — при общем объёме кэша в nM Мбайт на каждое ядро приходится по nM/nC Мбайта, где nC количество ядер процессора. Обычно латентность L2 кэша, расположенного на кристалле ядра, составляет от 8 до 20 тактов ядра.
Кэш третьего уровня наименее быстродействующий, но он может быть очень внушительного размера — более 24 Мбайт. L3 кэш медленнее предыдущих кэшей, но всё равно значительно быстрее, чем оперативная память. В многопроцессорных системах находится в общем пользовании и предназначен для синхронизации данных различных L2.
ROM
В памяти типа ROM (Read Only Memory), или ПЗУ (постоянное запоминающее устройство), данные можно только хранить, изменять их нельзя. Это энергонезависимая память, используется для хранения массива неизменяемых данных, любые данные, записанные в нее, сохраняются при выключении питания. Используется только для чтения данных, в ROM помещаются команды запуска персонального компьютера, т. е. программное обеспечение, которое загружает систему.
ROM представляет собой часть оперативной памяти системы. Другими словами, часть адресного пространства оперативной памяти отводится для ROM. Это необходимо для хранения программного обеспечения, которое позволяет загрузить операционную систему.
Основной код BIOS содержится в микросхеме ROM на системной плате, но на платах адаптеров также имеются аналогичные микросхемы. Они содержат вспомогательные подпрограммы базовой системы ввода-вывода и драйверы, необходимые для конкретной платы, особенно для тех плат, которые должны быть активизированы на раннем этапе начальной загрузки, например видеоадаптер. Платы, не нуждающиеся в драйверах на раннем этапе начальной загрузки, обычно не имеют ROM, потому что их драйверы могут быть загружены с жесткого диска позже — в процессе начальной загрузки.
Флэш-память
Флеш-память (англ. flash memory) — разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти (ПППЗУ).
Она может быть прочитана сколько угодно раз (в пределах срока хранения данных, типично — 10-100 лет), но писать в такую память можно лишь ограниченное число раз (максимально — около миллиона циклов).
Флэш-память хранит информацию в массиве ячеек на основе транзисторов с плавающим затвором.. В традиционных устройствах с одноуровневыми ячейками каждая из них может хранить только один бит.
Флэш-память наиболее известна применением в USB флеш-накопителях (англ. USB flash drive). В основном применяется NAND-тип памяти, которая подключается через USB по интерфейсу USB mass storage device (USB MSC). Данный интерфейс поддерживается всеми современными операционными системами.
Благодаря большой скорости, объёму и компактным размерам USB флеш-накопители полностью вытеснили с рынка дискеты. На флэш-памяти также основываются карты памяти, такие как Secure Digital (SD) и Memory Stick, которые активно применяются в портативной технике (фотоаппараты, мобильные телефоны). Флэш-память занимает большую часть рынка переносных носителей данных.
Параметры микросхем памяти
Объём. Указывается в мегабайтах или гигабайтах.
Тип памяти - это архитектура, по которой организованы сами микросхемы памяти.
Количество чипов в модуле - кратно 8 для модулей без ECC, для модулей с ECC — кратно 9. Чипы ОЗУ могут располагаться на одной (SIMM Single In-line Memory Module, односторонний модуль памяти) или обеих (DIMM - Dual In-line Memory Module, двухсторонний модуль памяти) сторонах модуля. Для современных модулей DDR2» и DDR3 SDRAM используется 240-pin DIMM
Частота памяти, например, 800 МГц 1066 МГц
Задержки (тайминги): CAS Latency (CL) – RAS to CAS Delay (tRtoCd) – RAS Precharge Time (tRP).
Мера таймингов — такт.
СAS-латентность (англ. column address strobe latency) — это время (в циклах) ожидания между запросом процессора на получение ячейки с информацией из памяти и временем, когда оперативная память сделает первую ячейку доступной для чтения.
Row Address to Column Address Delay - число тактов между открытием строки и доступом к столбцам в ней.
Row Precharge Time – число тактов между командой на предварительный заряд банка (закрытие строки) и открытием следующей строки.
Пример тайминга 2-2-2
Пропускная способность = Частота (f) x разрядность шины памяти (c) x кол-во каналов (k)
Напряжение питания микросхем: 1,5 В для DDR3, 1,8 В для DDR2 и 2,5 В для DDR.
