
- •Строение и функции ионных каналов
- •Роль ионов кальция в передаче нервного импульса
- •Высвобождение кальция саркоплазматическим ретикулумом
- •Особенности ацетилхолиновых рецепторов в клетках поперечно-полосатой и сердечной мышцах
- •Общая характеристика и классификация миорелаксантов по химической структуре и механизму действия
- •4. Влияние миорелаксантов на основные функциональные системы организма и обмен веществ
Лекция №4 ИНИЦИАЦИЯ И РЕГУЛЯЦИЯ МЫШЕЧНОГО СОКРАЩЕНИЯ
СТРОЕНИЕ НЕРВНО-МЫШЕЧНОГО ВОЛОКНА
Волокна скелетных мышц иннервируются аксонами нервных клеток, называемых мотонейронами (или соматическими эфферентными нейронами).
Аксоны мотонейронов, расположенных в передних рогах спинного мозга ( двигательные аксоны ) образуют синапсы с волокнами скелетных мышц.
При подходе аксона к поверхности мышечного волокна миелиновая оболочка заканчивается, и он образует терминальную часть (нервное окончание) в виде нескольких коротких отростков, располагающихся в желобках на поверхности мышечного волокна. Область плазматической мембраны мышечного волокна, лежащая непосредственно под нервным окончанием, обладает особыми свойствами и называется двигательной концевой пластинкой. Структура, состоящая из нервного окончания и двигательной концевой пластинки, - это нервно-мышечное соединение (нервно-мышечный синапс).
Таким образом, двигательной концевой пластинкой (нервно-мышечным соединением, нервно-мышечными концевыми пластинками, моторными бляшками) называются синапсы между аксоном мотонейрона и волокном скелетной мышцы.
Они имеют все типичные морфологические характеристики химических синапсов.
Рассмотрим нервно-мышечное соединение скелетной мышцы при возбуждении мембраны мышечного волокна.
Поскольку сигналом для запуска сокращения служит потенциал действия плазматической мембраны волокна скелетной мышцы резонно задать вопрос: каким образом он возникает? В скелетных мышцах потенциалы действия можно вызвать только одним способом - раздражением нервных волокон. (Для инициации сокращений сердечной мышцы и гладкой мускулатуры есть и другие механизмы).
Итак, как было сказано выше, волокна скелетных мышц иннервируются аксонами нервных клеток (мотонейронами). Тела этих клеток расположены в стволе мозга или в спинном мозге. Аксоны мотонейронов покрыты миелиновой оболочкой, а их диаметр больше, чем у других аксонов, поэтому они проводят потенциалы действия с высокой скоростью, обеспечивая поступление сигналов из ЦНС к волокнам скелетных мышц лишь с минимальной задержкой.
При подходе аксона к поверхности мышечного волокна миелиновая оболочка заканчивается, и он образует терминальную часть (нервное окончание) в виде нескольких коротких отростков, располагающихся в желобках на поверхности мышечного волокна (аксон мотонейрона разделяется на множество ветвей, каждая из которых образует одно соединение с мышечным волокном). Таким образом, один мотонейрон иннервирует много мышечных волокон, но каждым мышечным волокном управляет ветвь только от одного мотонейрона. Область плазматической мембраны мышечного волокна, лежащая непосредственно под нервным окончанием, обладает особыми свойствами и называется двигательной концевой пластинкой, а мотонейрон и мышечные волокна, которые он иннервирует, составляют двигательную единицу. Мышечные волокна одной двигательной единицы находятся в одной и той же мышце, но не в виде компактной группы, а рассеяны по ней. Когда в мотонейроне возникает потенциал действия, все они получают стимул к сокращению. Структура, состоящая из нервного окончания и двигательной концевой пластинки, - это нервно-мышечное соединение (нервно-мышечный синапс).
Терминали аксонов мотонейрона (двигательные нервные окончания) содержат пузырьки, аналогичные тем, которые обнаружены в межнейронных синапсах. Пузырьки заполнены нейромедиатором ацетилхолином (ACh) . Поступающий от мотонейрона потенциал действия деполяризует плазматическую мембрану нервного окончания, вследствие чего открываются потенциалзависимые кальциевые каналы и в нервное окончание входит Са2+ из внеклеточной среды. Ионы Са2+ связываются с белками, которые обеспечивают слияние мембраны ACh-содержащих везикул с плазматической мембраной нервного окончания и высвобождение ACh в синаптическую щель, разделяющую нервное окончание и двигательную концевую пластинку .
Молекулы ACh диффундируют от нервного окончания к двигательной концевой пластинке, где связываются с ацетилхолиновыми рецепторами никотинового типа . При связывании с ACh открывается ионный канал каждого рецепторного белка, проницаемый как для Na+, так и для К+. Из-за разницы трансмембранных электрохимических градиентов этих ионов входящий в мышечное волокно поток Na+ больше, чем выходящий поток, благодаря чему возникает местная деполяризация двигательной концевой пластинки - потенциал концевой пластинки (ПКП). ПКП аналогичен возбуждающему постсинаптическому потенциалу (ВПСП) в межнейронных синапсах.
Однако амплитуда одиночного ПКП существенно выше, чем ВПСП, потому что в нервно-мышечном соединении высвобождаемый нейромедиатор попадает на более обширную поверхность, где связывается с гораздо большим количеством рецепторов и где, следовательно, открывается намного больше ионных каналов. По этой причине амплитуда одиночного ПКП обычно бывает более чем достаточна для того, чтобы в смежной с концевой пластинкой области плазматической мышечной мембраны возник местный электрический ток, инициирующий потенциал действия. Затем потенциал действия распространяется по поверхности мышечного волокна посредством такого же механизма, что и в мембране аксона. Большинство нервно- мышечных соединений расположены в срединной части мышечного волокна, откуда возникший потенциал действия распространяется к обоим его концам.
Таким образом, каждый потенциал действия мотонейрона, как правило, вызывает потенциал действия в каждом мышечном волокне своей двигательной единицы. Иная ситуация складывается в межнейронных синапсах, где деполяризация постсинаптической мембраны достигает порогового уровня только в результате временной и пространственной суммации нескольких ВПСП и только тогда генерируется потенциал действия.
Между межнейронным и нервно-мышечным синапсами есть и другое различие. В некоторых межнейронных синапсах наблюдаются тормозным постсинаптическим потенциалом (ТПСП), которые гиперполяризуют, т.е. стабилизируют постсинаптическую мембрану, снижая вероятность генерирования потенциала действия. Тормозные потенциалы никогда не возникают в скелетной мышце человека, здесь все нервно- мышечные соединения возбуждающие.
Наряду с рецепторами ACh , на двигательной концевой пластинке присутствует фермент ацетилхолин-эстераза, которая его расщепляет (так же, как в других холинергических синапсах). ACh, связанный с рецепторами, находится в равновесии со свободным ACh в синаптической щели между мембранами аксона и мышцы. По мере, того, как концентрация свободного ACh снижается вследствие его расщепления ацетилхолин-эстеразой, уменьшается количество ACh, способного связываться с рецепторами. Когда не останется рецепторов, связанных с ним, ионные каналы концевой пластинки окажутся закрытыми. Деполяризация концевой пластинки завершается, мембранный потенциал возвращается к уровню покоя и концевая пластинка вновь способна отвечать на ACh, высвобождаемый при поступлении к нервному окончанию следующего потенциала действия.
Строение и функции ионных каналов
Ионы Na+, K+, Са2+, Сl- проникают внутрь клетки и выходят наружу через специальные, заполненные жидкостью каналы. Размер каналов довольно мал (диаметр 0,5—0,7 нм). Расчеты показывают, что суммарная площадь каналов занимает незначительную часть поверхности клеточной мембраны. Функцию ионных каналов изучают различными способами. Наиболее распространенным является метод фиксации напряжения, или «voltage-clamp». Сущность метода заключается в том, что с помощью специальных электронных систем в процессе опыта изменяют и фиксируют на определенном уровне мембранный потенциал. При этом измеряют величину ионного тока, протекающего через мембрану. Если разность потенциалов постоянна, то в соответствии с законом Ома величина тока пропорциональна проводимости ионных каналов. В ответ на ступенчатую деполяризацию открываются те или иные каналы, соответствующие ионы входят в клетку по электрохимическому градиенту, т. е. возникает ионный ток, который деполяризует клетку. Это изменение регистрируется с помощью управляющего усилителя и через мембрану пропускается электрический ток, равный по величине, но противоположный по направлению мембранному ионному току. При этом трансмембранная разность потенциалов не изменяется. Совместное использование метода фиксации потенциала и специфических блокаторов ионных каналов привело к открытию различных типов ионных каналов в клеточной мембране. В настоящее время установлены многие типы каналов для раз-личных ионов. Одни из них весьма специфичны, вторые, кроме основного иона, могут пропускать и другие ионы. Изучение функции отдельных каналов возможно методом ло-кальной фиксации потенциала «path-clamp»;). Стеклянный микроэлектрод (микропипетка) заполняют солевым раствором, прижимают к поверхности мембраны и создают небольшое разрежение. При этом часть мембраны подсасывается к микроэлектроду. Если в зоне присасывания оказывается ионный канал, то регистрируют активность одиночного канала. Система раздражения и регистрации активности канала мало отличается от системы фиксации напряжения. Ток через одиночный ионный канал имеет прямоугольную форму и одинаков по амплитуде для каналов различных типов. Длительность пребывания канала в открытом состоянии имеет вероятностный характер, но зависит от величины мембранного потенциала. Суммарный ионный ток определяется вероятностью нахождения в открытом состоянии в каждый конкретный период времени определенного числа каналов. Наружная часть канала сравнительно доступна для изучения, исследование внутренней части представляет значительные трудности. П. Г. Костюком был разработан метод внутриклеточного диализа, который позволяет изучать функцию входных и выходных структур ионных каналов без применения микроэлектродов. Оказалось, что часть ионного канала, открытая во внеклеточное про-странство, по своим функциональным свойствам отличается от части канала, обращенной во внутриклеточную среду. Именно ионные каналы обеспечивают два важных свойства мембраны: селективность и проводимость. Селективность, или избирательность, канала обеспечивается его особой белковой структурой. Большинство каналов являются электроуправляемыми, т. е. их способность проводить ионы зависит от величины мембранного потенциала. Канал неоднороден по своим функциональным характеристикам, особенно это касается белковых структур, находящихся у входа в канал и у его выхода (так называемые воротные механизмы). Рассмотрим принцип работы ионных каналов на примере натриевого канала. Полагают, что в состоянии покоя натриевый канал закрыт. При деполяризации клеточной мембраны до определенного уровня происходит открытие m-активационных ворот (активация) и усиление поступления ионов Na+ внутрь клетки. Через несколько миллисекунд после открытия m-ворот происходит закрытие п-ворот, расположенных у выхода натриевых каналов (инактивация). Инактивация развивается в клеточной мембране очень быстро и степень инактивации зависит от величины и времени действия деполяризующего стимула. Работа натриевых каналов определяется величиной мембранного потенциала в соответствии с определенными законами вероятности. Рассчитано, что активированный натриевый канал пропускает всего 6000 ионов за 1 мс. При этом весьма существенный натриевый ток, который проходит через мембраны во время возбуждения, представляет собой сумму тысяч одиночных токов. При генерации одиночного потенциала действия в толстом нерв-ном волокне изменение концентрации ионов Na+ во внутренней среде составляет всего 1/100000 от внутреннего содержания ионов Na гигантского аксона кальмара. Однако для тонких нервных волокон это изменение концентрации может быть весьма существенным. Кроме натриевых, в клеточных мембранах установлены другие виды каналов, избирательно проницаемых для отдельных ионов: К+, Са2+, причем существуют разновидности каналов для этих ионов. Ходжкин и Хаксли сформулировали принцип «независимости» каналов, согласно которому потоки натрия и калия через мембрану независимы друг от друга. Свойство проводимости различных каналов неодинаково. В ча-стности, для калиевых каналов процесс инактивации, как для натриевых каналов, не существует. Имеются особые калиевые каналы, активирующиеся при повышении внутриклеточной концентрации кальция и деполяризации клеточной мембраны. Активация калий-кальцийзависимых каналов ускоряет реполяризацию, тем самым восстанавливая исходное значение потенциала покоя. Особый интерес представляют кальциевые каналы. Входящий кальциевый ток, как правило, недостаточно велик, чтобы нормально деполяризовать клеточную мембрану. Чаще всего поступающий в клетку кальций выступает в роли «мессенджера», или вторичного посредника. Активация кальциевых каналов обеспечивается деполяризацией клеточной мембраны, например входящим натриевым током. Процесс инактивации кальциевых каналов достаточно сложен. С одной стороны, повышение внутриклеточной концентрации свободного кальция приводит к инактивации кальциевых каналов. С другой стороны, белки цитоплазмы клеток связывают кальций, что позволяет поддерживать длительное время стабильную величину кальциевого тока, хотя и на низком уровне; при этом натриевый ток полностью подавляется. Кальциевые каналы играют существенную роль в клетках сердца.