
- •1. Сущность и основные параметры режима ручной дуговой сварки покрытыми электродами.
- •2. Сущность и основные параметры режима механизированной сварки в защитных газах.
- •3. Сущность и основные параметры режима сварки порошковой проволокой.
- •4. Сущность и основные параметры режима электрошлаковой сварки.
- •5. Сущность и основные параметры режима сварки неплавящимся электродом в среде инертных газов.
- •6. Сущность и основные параметры режима механизированной и автоматической сварки под флюсом.
- •7. Сущность и основные параметры режима электронно – лучевой сварки.
- •8. Сущность и основные параметры режима лазерной сварки.
- •9. Сущность и основные параметры режима газовой сварки.
- •10. Сущность и основные параметры режима плазменной сварки.
- •11. Сущность и основные параметры режима кислородной резки.
- •12. Сущность и основные параметры режима плазменной резки.
- •13. Способы формирования корневого шва при многослойной сварке.
- •14. Характеристики плавления электродов.
- •15. Сварочная проволока и типы электродов для сварки.
- •16. Сварочные материалы для автоматической сварки под флюсом.
- •17. Особенности ручной сварки неповоротных стыков труб ручной сваркой покрытыми электродами.
- •18. Автоматы для сварки под флюсом.
- •19. Полуавтоматы для механизированной сварки в защитных газах.
- •20. Автоматы для сварки неплавящимся электродом.
- •21. Методика расчета режимов при автоматической сварке под слоем флюса углеродистых и низколегированных сталей.
- •22. Строение сварного соединения при дуговых способах сварки сталей.
- •23. Технологии сварки низколегированных конструкционных сталей.
- •24. Технологии сварки теплоустойчивых сталей.
- •25. Технологии сварки легированных сталей.
- •26. Технологии сварки высоколегированных сталей.
- •27. Технологии сварки алюминиевых сплавов.
- •28. Технологии сварки титановых сплавов.
- •29. Понятие гибкости технологического процесса сварки.
- •30. Характеристики механических свойств сварных соединений и методы их получения.
- •31. Технологии сварки чугуна.
5. Сущность и основные параметры режима сварки неплавящимся электродом в среде инертных газов.
В настоящее время сварка угольным электродом находит ограниченное применение. В качестве защитного газа в этом случае применяют углекислый газ . Хорошие результаты достигаются при автоматической сварке оплавлением отбортованных кромок при изготовлении канистр на специальных установках. Это объясняется образованием окиси углерода при взаимодействии углекислого газа с твердым углеродом. Окись углерода – эффективный защитный газ, так как он не растворяется в металле шва.
При применении вольфрамового электрода в качестве защитных используют инертные газы или их смеси и постоянный или переменный ток.
6. Сущность и основные параметры режима механизированной и автоматической сварки под флюсом.
Наиболее широко распространен процесс при использовании одного электрода – однодуговая сварка. Сварочная дуга горит между голой электродной проволокой и изделием, находящимся под слоем флюса. В расплавленном флюсе газами и парами флюса и расплавленного металла образуется полость – газовый пузырь, в котором существует сварочная дуга. Давление газов в сварочном пузыре составляет 7-9 г/см2, но в сочетании с механическим давлением, создаваемым дугой, его достаточно для оттеснения жидкого металла из-под дуги, что улучшает теплопередачу от нее к основному металлу. Повышение силы сварочного тока увеличивает механическое давление дуги и глубину проплавления основного металла Нпр. Кристаллизация расплавленного металла сварочной ванны приводит к образованию сварного шва. Затвердевший флюс образует шлаковую корку на поверхности шва. Расплавленный флюс, образуя пузырь и покрывая поверхность сварочной ванны, эффективно защищает расплавленный металл от взаимодействий с воздухом. Металлургические взаимодействия между расплавленным металлом и шлаком способствуют получению металла шва с требуемым химическим составом.
В зависимости от способа перемещения дуги относительно изделия сварка выполняется автоматически и полуавтоматически. При автоматической сварке подача электродной проволоки в дугу и перемещение ее осуществляется специальными механизмами. При полуавтоматической сварке дугу перемещает сварщик вручную.
7. Сущность и основные параметры режима электронно – лучевой сварки.
Сущность процесса состоит в использовании кинетической энергии потока электронов, движущихся с высокими скоростями в вакууме. Для уменьшения потери кинетической энергии электронов за счет соударения с молекулами газов воздуха, а так же для химической и тепловой защиты катода в электронной пушке создают вакуум порядка 10-4 - 10-5 мм рт.ст. Появляется возможность сварки тугоплавких металлов, керамики и т.д. Уменьшение протяженности зоны термического влияния снижает вероятность рекристаллизации основного металла в этой зоне. Хорошее качество электронно-лучевой сварки достигается также на низкоуглеродистых, коррозионно-стойких сталях, меди, и медных, никелевых, алюминиевых сплавах.
Проплавление при электронно-лучевой сварке обусловлено в основном давлением потока электронов, характером выделения теплоты в объеме твердого металла и реактивным давлением испаряющегося металла, вторичных и тепловых электронов и излучением. Возможна сварка непрерывным электронным лучем. Однако при сварке лекгоиспаряющихся металлов эффективность электронного потока и количество выделяющейся в изделии теплоты уменьшаются вследствие потери энергии на ионизацию паров металлов.
Основные параметры режима сварки – сила тока в луче, ускоряющее напряжение, скорость перемещения луча по поверхности изделия, продолжительность импульсов и пауз, точность фокусировки луча, величина вакуума.