
- •Вопрос 25. Строение, локализация генов человека
- •Вопрос 26. Свойства и функции генов человека
- •Свойства гена
- •Вопрос 27. Классификация генов человека. Группы сцепления (Томас Морган, 1911)
- •Закон сцепленного наследования
- •Вопрос 28. Генетические карты.
- •Вопрос 29. Методы анализа генов. Секвенирование днк
- •Вопрос 31. Методы анализа генов. Метод Вестерн-блотт.
- •Подготовка образца
- •Гель-электрофорез
- •Перенос на мембрану
- •Блокирование
- •Детекция
- •Проведение пцр
- •Компоненты реакции
- •Праймеры
- •Криминалистика
- •Установление отцовства
- •Медицинская диагностика
- •Вопрос 32. Методы анализа генов. Гибридизация in situ. Метод fish
- •Вопрос 33. Понятие генотип, фенотип, наследственные признаки. Характеристика аллельных и неалелльных генов
- •Вопрос 34. Моногенные менделирующие признаки (явление полиморфизма, полное, неполное доминирование, кодоминирование, эпистаз, комплементарность, эффект положения, пенетрантность, экспрессивность)
- •Полное доминирование
- •Неполное доминирование
- •Кодоминирование
- •Локальное (внутримолекулярное) доминирование Относительный характер доминирования
- •Вопрос 35. Нормальные наследственные моногенные признаки. Группы крови (аво, Rh, mnSs, Xg). Секреторные группы
- •Система ab0
- •[Править]Система Rh (резус-система)
Закон сцепленного наследования
В 1911 году Томасом Морганом был сформулирован закон сцепленного наследования — сцепленные гены, локализованные в одной хромосоме, наследуются вместе и не обнаруживают независимого расщепления.
В каждой хромосоме сосредоточено несколько тысяч генов, по которым одна особь данного вида отличается от другой. Выясняя вопрос, как будут наследоваться признаки этих генов, Морган установил, что гены, расположенные в одной хромосоме, наследуются сцеплено, вместе, как одна альтернативная пара, не обнаруживая независимого наследования.
Сцепление не всегда бывает абсолютным. В профазе первого деления мейоза при конъюгации хромосом происходит их перекрест, вследствие чего гены, находящиеся в одной хромосоме, оказывались в разных гомологических хромосомах и попадали в разные гаметы.
Два гена, расположенные в одной хромосоме (светлые круги в одной из хромосом), в результате перекреста оказываются в разных гомологичных хромосомах.
Такой обмен приводит к перегруппировке сцепленных генов и является одним из источников комбинативной изменчивости.
Перекрест хромосом играет определенную роль в эволюции, так как новое сочетание генов вызывает появление новых признаков, которые могут оказаться полезными или вредными для организма и повлиять на их выживаемость.
Ген может одновременно влиять на формирование нескольких признаков, проявляя при этом множественное действие.
Хромосомная теория наследственности.
Основные положения хромосомной теории наследственности были сформулированы американским ученым Томасом Морганом в 1911 году. В основе теории лежит поведение хромосом в мейозе, от которого зависит качество образующихся гамет.
Основные положения хромосомной теории наследственности:
Единицей наследственной информации является ген, локализованный в хромосоме.
Каждая хромосома содержит множество генов; гены в хромосомах располагаются линейно, каждый ген имеет определенное место (локус) в хромосоме.
Гены наследственно дискретны, относительно стабильны, но при этом могут мутировать.
Гены, расположенные в одной хромосоме, наследуются совместно, сцеплено.
Сцепление генов может нарушаться в процессе мейоза в результате кроссинговера, что увеличивает число комбинаций генов в гаметах.
Частота кроссинговера прямо пропорциональна расстоянию между генами.
В процессе мейоза гомологичные хромосомы, а следовательно, аллельные гены попадают в разные гаметы.
Негомологичные хромосомы расходятся произвольно, независимо друг от друга и образуют различные комбинации в гаметах.
Значение хромосомной теории наследственности.
*Дала объяснение законам Менделя.
*Вскрыла цитологические основы наследования признаков.
*Объяснила генетические основы теории естественного отбора.
Вопрос 28. Генетические карты.
Генетическая карта — схема расположения структурных генов и регуляторных элементов, а также генетических маркеров в хромосоме.
Первоначально взаимное расположение генов в хромосомах определяли по частоте кроссинговера между ними. Соответствующее генетическое расстояние измеряли в сантиморганах (или сантиморганидах, сМ): 1 сМ соответствует частоте кроссинговера в 1%. При таком методе генетического картирования физическое расстояние между генами нередко отличалось от их генетического расстояния, так как кроссинговер происходит не с одинаковой вероятностью в разных участках хромосом. При современных методах генетического картирования расстояние между генами измеряется в тысячах пар нуклеотидов (т.п.н.) и соответствует физическому.
При создании генетической карты устанавливают последовательности расположения генетических маркеров (в этом качестве использовали различные ДНК полиморфизмы, т.е. наследуемые вариации в структуре ДНК) по длине всех хромосом с определенной плотностью, т.е. на достаточно близком расстоянии друг от друга.
Генетическая карта маркерных последовательностей должна облегчить картирование всех генов человека, особенно генов наследственных болезней, что является одной из основных целей указанной программы. За короткое время было генетически картировано несколько тысяч генов.
Три основные задачи доминировали в международной программе «Геном человека» в 1993—1998 гг. — это создание генетической и физической карт генома и собственно сиквенс.
Создание генетической карты предполагало установление последовательности расположения генетических маркеров (в этом качестве использовали различные преимущественно ДНК полиморфизмы, т.е. наследуемые вариации в структуре ДНК) по длине всех хромосом с определенной плотностью, т.е. на достаточно близком расстоянии друг от друга.
Такая генетическая карта должна была облегчить картирование всех генов человека, особенно генов наследственных болезней, что является одной из основных целей указанной программы. За короткое время было генетически картировано несколько тысяч генов.
Параллельно и одновременно с исследованиями по программе «Геном человека», имеющей глобальное значение, генетически картировали локусы, ответственные за наследственные болезни.
Эта работа значительно облегчалась благодаря созданию генетической карты ДНК-маркеров в рамках программы. Картирование генов наследственных болезней принципиально важно для медицины, так как открывает возможность непрямой диагностики соответствующих наследственных болезней.
Кроме того, генетическое картирование необходимо в идентификации и последующем клонировании того или иного гена наследственной болезни, изучения его структуры, природы мутаций в этом гене, в перспективе открывает возможности манипуляций с этим геном, например в генотерапевтических целях.