
- •1.Основные методы радиолокации. Импульсный метод измерения дальности. Определение направления на объект.
- •2.Основные технические характеристики судовых нрлс.
- •3.Основные эксплуатационные характеристики судовых нрлс. Влияние на них технических параметров.
- •4.Мертвая зона и теневые сектора нрлс.
- •5.Дальность радиолокационного наблюдения в свободном пространстве(вывод формулы).
- •6.Влияние атмосферы на дальность действия нрлс.
- •7.Влияние сферичности Земли на дальность действия нрлс.
- •8.Влияние водной поверхности на дальность радиолокационного обнаружения.
- •9.Основные свойства радиолокационных объектов. Понятие о зеркальном и рассеянном отражении свч сигналов от целей.
- •10.Эффективная поверхность отражения объектов простейшей формы.
- •11. Эфективная поверхность отражения судов
- •12. Функциональная Схема нрлс….
- •13. Виды Ориентации индикатора нрлс
- •14 Возможные виды изображения индикатора
- •23. Антены нрлс. Их характеристики и конструкции.
- •24. Антенные переключатели. Их назначение принцип работы.
- •25. Вращающейся переход в антенно-волноводных устройствах.
- •27. Основные блоки радиолокационного приемника. Их назначения.
- •28. Преобразование частоты в радиолокационном приемнике. Маломощные генераторы свч.
- •29. Усилители промежуточной частоты радиолокационного приемников. Назначение и их особенности.
- •30. Автоматическая подстройка частоты (апч) радиоприемного устройства рлс. Ее назначение. Упращенная функциональная схема. Характеристика дискриминатора.
- •31. Временная автоматическая регулировка усиления приёмника рлс
- •33. Упрощённая функциональная схема индикатора рлс. Основные временные соотношения.
- •34. Принцип получения радиально кругового обзора с неподвижной отклоняющей системой.
- •35. Формирование радиально-круговой развёртки в рлс с модуляцией пилообразного напряжения углом поворота антенны после гпн (на примере нрлс «Наяда-5»)
- •36. Возможные виды отображения движения рлс. Принцип формирования истинного движения судовой рлс.
- •37. Назначение нкд (нвд). Способы их формирования.
- •38. Назначение пкд (нвд). Способы их формирования.
- •39. Назначение отметки курса. Способы её формирования.
- •40. Электронный визир направления (эвн). Его назначение и способы формирования. (на примере нрлс «Наяда-5»).
- •41. Радиолокационные маяки-ответчики. Их назначение и характеристики
- •42 Радиолокационные ответчики .Их назначение и характеристики
- •49. Фазовые рнс. Принцип их построения
- •50. Принцип построения гиперболических рнс
- •51) Импульсно-фазовые рнс. Принцип их построения.
- •52). Спутниковые радио-навигационные системы. Зоны радиовидимостиспутникового сигнала
- •53)Методы определения места судна
- •54)Пассивный псевдодальномерный способ определения места.
- •55).Спутниковая рнс «Навстар»
- •56) Спутниковая рнс «глонасс».
- •57) Спутниковая рнс «Галилео».
- •58)Дифференциальный режим gps. Некоторые способы дифференциальныч определений.
- •59) Логарифмический усилитель в приёмных устройствах рлс.
- •60) Рлс доплеровского типа, назначения и особенности.
- •61) Условия отражения радиолокационных сигналов от объектов.
57) Спутниковая рнс «Галилео».
Галилео (Galileo) — совместный проект спутниковой системы навигации Европейского союза и Европейского космического агентства, является частью транспортного проекта Трансъевропейские сети (англ. Trans-European Networks). Система предназначена для решения геодезических и навигационных задач. Ныне существующие GPS-приёмники не смогут принимать и обрабатывать сигналы со спутников Галилео (кроме приемников компаний Altus Positioning Systems[1], Septentrio, JAVAD GNSS[2] и российских приемников ФАЗА+[3]), хотя достигнута договорённость о совместимости и взаимодополнению с системой NAVSTAR GPS третьего поколения. Финансирование проекта будет осуществляться в том числе за счёт продажи лицензий производителям приёмников.
Спутники «Галилео» будут выводиться на орбиты высотой 23 222 км (или 29 600,318 км от центра Земли), проходя один виток за 14 ч 4 мин и 42 с и обращаясь в трех плоскостях, наклонённых под углом 56° к экватору, что обеспечит одновременную видимость из любой точки земного шара по крайней мере четырёх аппаратов. Временна́я погрешность атомных часов, установленных на спутниках, составляет одну миллиардную долю секунды, что обеспечит точность определения места приёмника около 30 см на низких широтах. За счёт более высокой, чем у спутников GPS орбиты, на широте Полярного круга будет обеспечена точность до одного метра.
Каждый аппарат «Галилео» весит около 700 кг, его габариты со сложенными солнечными батареями составляют 3,02×1,58×1,59 м, а с развёрнутыми — 2,74×14,5×1,59 м, энергообеспечение равно 1420 Вт на солнце и 1355 Вт в тени. Расчетный срок эксплуатации спутника превышает 12 лет.
58)Дифференциальный режим gps. Некоторые способы дифференциальныч определений.
Спутниковые навигационные системы позволяют потребителю получить координаты с точностью порядка 10–15 м. Однако для многих задач, особенно для навигации в городах, требуется большая точность. Один из основных методов повышения точности определения местонахождения объекта основан на применении известного в радионавигации принципа дифференциальных навигационных измерений.
Дифференциальный режим DGPS (Differential GPS) позволяет установить координаты с точностью до 3 м в динамической навигационной обстановке и до 1 м — в стационарных условиях. Дифференциальный режим реализуется с помощью контрольного GPS-приёмника, называемого опорной станцией. Она располагается в пункте с известными координатами, в том же районе, что и основной GPS-приёмник. Сравнивая известные координаты (полученные в результате прецизионной геодезической съёмки) с измеренными, опорная станция вычисляет поправки, которые передаются потребителям по радиоканалу в заранее оговоренном формате.
Аппаратура потребителя принимает от опорной станции дифференциальные поправки и учитывает их при определении местонахождения потребителя.
Результаты, полученные с помощью дифференциального метода, в значительной степени зависят от расстояния между объектом и опорной станцией. Применение этого метода наиболее эффективно, когда преобладающими являются систематические ошибки, обусловленные внешними (по отношению к приёмнику) причинами. По экспериментальным данным, опорную станцию рекомендуется располагать не далее 500 км от объекта.