
- •Краснодар 2013 Содержание
- •Нормативные ссылки
- •Введение
- •Характеристики температурных датчиков
- •Доля измерения температуры в технологических измерениях
- •Основные виды температурных датчиков, принцип работы
- •Термопреобразователи сопротивления
- •Металлические терморезисторы
- •Полупроводниковые терморезисторы
- •Датчики температуры из диодов и транзисторов
- •Специализированные полупроводниковые датчики
- •Датчики температуры для микроконтроллеров
- •Старые примитивные датчики температуры
- •Заключение
- •Список использованной литературы
Полупроводниковые терморезисторы
Их также часто называют термисторами. По сравнению с медными и платиновыми они имеют более высокую чувствительность и отрицательный ТКС. Это говорит о том, что при увеличении температуры их сопротивление уменьшается. ТКС термисторов на порядок выше, чем у их медных и платиновых собратьев. При весьма малых габаритах сопротивление термисторов может достигать до 1 МОм, что исключает влияние на результат измерения сопротивления соединительных проводов.
Для измерения температуры наибольшее распространение получили полупроводниковые терморезисторы марки КМТ (на основе окислов марганца и кобальта), а также ММТ (окислы марганца и меди). Функция преобразования термисторов достаточно линейна в диапазоне температур -100 - 200°C, надежность полупроводниковых терморезисторов очень высока, характеристики стабильны в течение долгого времени.
Единственным недостатком является то, что в серийном производстве не удается с достаточной точностью воспроизвести необходимые характеристики. Один экземпляр значительно отличается от другого, примерно так же, как транзисторы: вроде бы из одной упаковки, а коэффициент усиления у всех разный, двух одинаковых из сотни не найдешь. Такой разброс параметров приводит к тому, что при замене термистора приходится заново производить регулировку аппаратуры.
Для питания термопреобразователей сопротивления чаще всего используется мостовая схема, в которой уравновешивание моста производится при помощи потенциометра. При изменении сопротивления терморезистора от воздействия температуры уравновесить мост можно только поворотом потенциометра.
Подобная схема с ручной регулировкой применяется в качестве демонстрационной в учебных лабораториях. Движок потенциометра имеет шкалу, проградуированную непосредственно в единицах температуры. В реальных измерительных схемах все, конечно, производится автоматически.
Датчики температуры из диодов и транзисторов
В тех же диапазонах температуры, что у полупроводниковых термосопротивлений для измерения и контроля температуры достаточно часто используются обычные диоды или p-n переходы транзисторов.
Применение этих приборов объясняется тем, что они имеют температурный коэффициент напряжения ТКН. У всех полупроводников он отрицательный и примерно одинаков: -2mV/°C. Чтобы в этом убедиться, достаточно проделать простейший опыт, описанный ниже.
Если цифровым мультиметром китайского производства при комнатной температуре «прозванивать» кремниевые диоды или переходы транзисторов, то на индикаторе высвечиваются цифры порядка 690 - 700. Для германиевых полупроводниковых приборов показания будут 400 - 450, правда, германиевые приборы применяются в настоящее время очень редко. Это не что иное, как падение напряжения, показанное в милливольтах, на p-n переходе в прямом направлении.
Если в момент такого измерения диод или транзистор немного подогреть, хотя бы паяльником, то показания будут уменьшаться. Причем чем больше степень нагрева, тем заметнее изменение показаний прибора в меньшую сторону. Чаще всего такие датчики применяются в различных электронных схемах, например в усилителях звуковых частот для стабилизации режимов работы схемы.