Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ШМИДТ ТЕВС том 2.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
6.9 Mб
Скачать

Напряжение (парциальное давление) о2 в тканях

Критическое напряжение О2 в митохондриях.

Напряжение О2 в клетках в норме имеет проме-

Рис. 23.2. Напряжение О2 (Ро2) и СО2СО2) в крови в различных участках сосудистой системы в условиях покоя (по [41] с изменениями)

Глава 23. Тканевое дыхание 633

жуточное значение между напряжением О2 в артериальной крови и минимальным значением, которое в органах (или частях органов) с высокими потребностями в кислороде составляет около 1 мм рт. ст. (133,3 Па). Для нормального протекания окислительных процессов необходимо, чтобы напряжение О2 в области митохондрий превосходило 0,1-1 мм рт.ст. (13,3-133,3 Па). Эта величина называется критическим напряжением О2 в митохондриях [15, 22, 39]. Если напряжение О2 в участках цитоплазмы, непосредственно граничащих с митохондриями, падает ниже критического, то полное окисление восстановленной цитохромоксидазы становится невозможным, перенос водорода и электронов в дыхательной цепи подавляется и в результате не может поддерживаться нормальная скорость энергетического обмена. Таким образом, важнейшим показателем, характеризующим снабжение тканей кислородом, служит напряжение О2 в клетках.

Внедрение в практику исследований полярографических методов (с. 593) позволило непосредствен-

Рис. 23.3. Напряжение 02 в сером веществе коры головного мозга. А. Гистограмма регионального напряжения 02 в коре головного мозга морской свинки в условиях нормальной вентиляции легких; максимальное напряжение 02 в исследуемой ткани такое же, как и в артериальной крови (Ро2 = 90-95 мм рт. ст. =12.012,7 кПа); минимальное Ро2 (в тех клетках, которые хуже всего снабжаются кислородом) составляет 0,5-1 мм рт. ст. (67-133 Па), что примерно на 25 мм рт. ст. (3,3 кПа) ниже среднего напряжения О2 в венозной крови сосудов коры головного мозга [34]. Б. Устройство микрозлектрода для полярографического измерения напряжения О2 в тканях

но измерять напряжение О2 в отдельных клетках при помощи микроэлектродов. Напряжение О2 в клетках, расположенных близко к поверхности, определяют при помощи миниатюрных платиновых микроэлектродов, введение которых в ткань не приводит к нарушению в ней микроциркуляции. Для измерения напряжения О2 в более глубинно расположенных клетках используют игловидные электроды с диаметром кончика в пределах 0,5-5 мкм (рис. 23.3, Б).

Оба этих метода используют в основном в опытах на животных. В то же время они были успешно применены и при исследовании больных для определения напряжения О2 в легкодоступных органах. Так, подробно изучено распределение напряжения О2 в покое и при нагрузке в пораженных мышцах при ряде мышечных заболеваний и состояний, сопровождающихся нарушением мышечного кровотока. При нейрохирургических операциях с помощью поверхностных микроэлектродов получены важные данные, касающиеся поступления кислорода к тем или иным участкам головного мозга. Результаты подобного исследования представлены на рис. 23.4 в виде гистограмм парциального давления О2 в поверхностных клетках различных участков коры головного мозга в условиях артериальной нормоксии и артериальной гипоксии [28].

В большинстве случаев, однако, снабжение кислородом какого-либо органа у человека рассчитывают по результатам непосредственного измерения важнейших показателей, влияющих на поступление О2,-скорости кровотока, напряжения и концентрации дыхательных газов, pH артериальной крови; на основании этих данных анализируют газоообмен в интересующем участке ткани.

Распределение напряжения О2 в ткани мозга. Наибольший интерес представляет распределение напряжения О2 в ткани головного мозга и в миокарде, поскольку при недостаточном поступлении кислорода к любому из этих двух органов может наступить смерть. Среднее распределение напряжения О2 в цилиндрическом участке коры головного мозга, снабжаемом одним капилляром, представлено на рис. 23.5 (при этом потребление О2 принимается равным 9· 102 млт1-мин1, а кровоток0,8 мл · г 1 · мин 1). При прохождении крови через капилляр напряжение О2 в нем падает с 90 ммрт. ст. (12,0 кПа) примерно до 28 ммрт. ст. (3,7 кПа). Эти изменения соответствуют эффективной кривой диссоциации оксигемоглобина (с. 610). Перпендикулярно продольному градиенту напряжения направлен радиальный градиент напряжения с разницей между напряжением О2 в крови и в периферических участках цилиндра около 26 мм рт. ст. (3,5 кПа). Хуже всего снабжаются кислородом клетки, расположенные у венозного конца цилиндра; по

634 ЧАСТЬ VI. ДЫХАНИЕ

Рис. 23.4. Гистограммы регионального парциального давления О2 в клетках, расположенных у поверхности коры головного мозга кошки в условиях артериальной нормоксии (А; PаО2 = 96 мм рт. ст. = 12,8 кПа), умеренной артериальной гипоксии (Б; PaQ2 = 52 мм

рт. ст. = 7,0 кПа) и тяжелой артериальной гипоксии (В; РdO2 =31 мм рт. ст.= 4.2кПа). По мере снижения Ро2 в артериальной крови распределения сдвигаются в сторону все более низких величин PO2, что проявляется в значительном увеличении числа измеренных значений PO2 в пределах 0-5 мм рт. ст. (0 0,7 кПа). При тяжелой артериальной гипоксии возникает выраженная тканевая гипоксия с аноксией многих клеток коры головного мозга [28]

расчетам напряжение О2 в области этих клеток составляет 1-2 мм рт. ст. (133-266 Па).

Вычисленные величины напряжения О2 хорошо согласуются с данными прямых измерений у животных [27] в аналогичных условиях (рис. 23.3. A и 23.4) и свидетельствуют о том, что ткань мозга отнюдь не так хорошо снабжается кислородом, как принято считать. Эти расчеты позволяют понять, почему уменьшение мозгового кровотока столь легко приводит к кислородному голоданию нейронов, расположенных в наиболее плохо снабжаемых кровью участках. В результате функция таких нейронов быстро нарушается, что во многих случаях приводит к частичной или полной потере сознания.

Распределение напряжения О2 в миокарде. Сердечная мышца отличается от большинства других тканей тем, что снабжение ее кислородом носит периодический характер. В ходе сердечного цикла изменяют-

ся как потребность миокарда в энергии, так и его кровоснабжение. При систоле в результате повышенного интрамурального давления кровоток в бассейне левой коронарной артерии снижается и может на короткое время полностью прекратиться во внутренних слоях миокарда левого желудочка (с. 495). В результате снабжение миокарда кислородом претерпевает периодические колебания: в систоле оно минимально, а в диастоле максимально. В то же время потребность клеток миокарда в энергии изменяется противоположным образом: она возрастает во время фазы сокращения и снижается во время фазы расслабления.

Существуют два механизма, полностью удовлетворяющие в нормальных условиях потребность миокарда в энергии, несмотря на снижение поступления О2 во время систолы. Один из них заклю-

Рис. 23.5. Схема распределения напряжения О2 в модели тканевого цилиндра по Крогу; в качестве примера приведен цилиндрический участок ткани коры головного мозга человека, снабжаемый одним капилляром (потребление О2 = 9-102 мл-г1-мин1; кровоток = = 0,8 мл-г1-мин1). В нормальных условиях среднее напряжение О2 в крови понижается с 90 мм рт. ст. (12,0 кПа) в области артериального конца капилляра до ~ 28 мм рт. ст. (3,7 кПа) в области венозного конца. Имеется также радиальный градиент среднего напряжения О2, направленный от капилляра к поверхности цилиндра и составляющий около 26 мм рт. ст. (3,5 кПа)