Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ШМИДТ ТЕВС том 2.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
6.9 Mб
Скачать

Глава 21. Легочное дыхание 595

Рис. 21.28. Расположение инспираторных (И) и экспираторных (Э) нейронов в продолговатом мозгу кошки. Слева дорсальная поверхность; справа-два поперечных среза, на которых изображены область сосредоточения дыхательных нейронов (красным) и положения ядра одиночного тракта (ЯОТ) и обоюдного ядра (ОЯ). IX & Х-корешки языкоглоточного и блуждающего нервов; С1 -корешок первого шейного спинномозгового нерва

Данные экспериментов с регистрацией активности нервных клеток позволили выделить два типа дыхательных нейронов [11, 41]. К одному из них принадлежат нейроны, возбуждающиеся преимущественно в фазе вдоха (инспираторные нейроны), к другому-нейроны, разряжающиеся в фазе выдоха (экспираторные нейроны) (рис. 21.28). Скопления инспираторных нейронов (И) образуют дорсальную группу поблизости от ядра одиночного тракта (ОТ) и вентральную группу вблизи обоюдного ядра (ОЯ) и в шейных сегментах С1-2. Экспираторные нейроны (Э) располагаются около обоюдного ядра между обеими зонами инспираторных клеток, а также ростральнее в области заднего ядра лицевого нерва.

Фазы базового дыхательного ритма. Для того чтобы понять нейронные процессы, лежащие в основе дыхания, важно учитывать, что дыхательный цикл, задаваемый центральными нервными структурами, состоит не из двух, а из трех фаз [41]. Первая из них - это инспирация. По ее окончании силы растяжения легких настолько велики, что им вначале необходимо противодействовать; в результате выдох осуществляется сравнительно медленно. Это - фаза постинспирации, во время которой инспираторные мышцы остаются на некоторое время сокращенными, а затем постепенно расслабляются. Вследствие этого объем воздуха, поступивший при вдохе, на какое-то время задерживается, а потом пассивно выдыхается. Наконец, последняя фаза дыхательного цикла-это активная экспирация, при которой сокращаются экспираторные мышцы.

Типы дыхательных нейронов. В экспериментах с регистрацией электрической активности были выделены 6 типов дыхательных нейронов, для каждого из которых характерен свой рисунок разрядов. Некоторые из них возбуждаются при инспирации, причем частота импульсации может возрастать либо снижаться, другие- в фазе постинспирации, третьи - во время экспирации. На рис. 21.29 изображены возбуждающие (красный цвет) и тормозные (серый цвет) постсинаптические потенциалы всех этих типов нейронов. Для сопоставления представлен рисунок активности диафрагмального нерва. Высота каждой красной зоны (суммарной величины возбуждающих потенциалов) соответствует величине импульсации.

Выделены следующие типы дыхательных нейронов [41]:

Э: поздние экспираторные нейроны (частота импульсации возрастает в фазу экспирации); ПТ-И: постинспираторные нейроны (частота им-

Рис. 21.29. Постсинаптическая активность различных дыхательных нейронов [41]. Возбуждающие потенциалы изображены красным, тормозные-серым. Внизу приведена одновременная запись активности в диафрагмальном нерве. Постинс. - фаза медленного расслабления дыхательной мускулатуры в начале выдоха. Фаза II-активация экспираторных мышц

596 ЧАСТЬ VI. ДЫХАНИЕ

пульсации быстро возрастает, а затем медленно снижается в фазе постинспирации);

Р-И: ранние инспираторные нейроны (частота импульсации быстро возрастает, а затем медленно снижается в фазе инспирации); ПМН-И: Полные инспираторные нейроны с медленно нарастающей импульсацией (частота импульсации медленно нарастает в фазе инспирации);

П-И: поздние инспираторные нейроны (выдают короткую вспышку импульсации в конце фазы инспирации);

Ибс: бульбоспинальные инспираторные нейроны (частота импульсации нарастает в фазе инспирации и снижается в фазе постинспирации).

Связи дыхательных нейронов. Ритмические сокращения дыхательной мускулатуры обусловлены сложными взаимодействиями между дыхательными нейронами. Характер распределения разрядов нейронов разных типов позволяет сделать некоторые предположения относительно их взаимосвязей, и на основании этих предположений высказаны некоторые гипотезы о механизме дыхательного ритма. Одну из таких гипотез [41] иллюстрирует схема соединения нейронов на рис. 21.30 (красные стрелки соответствуют возбуждающим, а серые-тормозным влияниям).

В соответствии с этой схемой афферентная импульсация от периферических рецепторов и высших центральных структур приводит к тонической активации ретикулярной формации (АРС). Под влиянием тонических возбуждений от АРС разряжаются полные инспираторные нейроны с медленно нарастающей импульсацией (ПМН-И) и через бульбоспинальные инспираторные нейроны бс) передают импульсацию на мотонейроны инспираторных мышц. Почти до самого окончания фазы инспирации поздние инспираторные нейроны (П-И) заторможены ранними инспираторными (Р-И) нейронами. Прекращение этого торможения приводит к запуску следуюшей фазы дыхательного цикла, при которой возбуждаются постинспираторные нейроны (ПТ-И), оказывающие тормозное влияние на все остальные клетки. При этом дыхательный цикл как бы временно прерывается. Наконец, возникает разряд поздних экспираторных нейронов (Э), что приводит к активации мотонейронов экспираторных мышц. Когда тормозное влияние Э ослабевает, может начинаться следующий дыхательный цикл.

Влияние механических факторов на дыхание

Рефлекс Геринга-Брейера. Дыхательный ритм, зарождающийся в структурах ЦНС, может изменяться под влиянием периферических стимулов.

Рис. 21.30. Гипотетическая схема связей между дыхательными нейронами (сокращения см. в тексте) в продолговатом мозгу [41]. Стрелками изображены аксональные проекции (красные стрелки-возбуждающие связи, серые стрелки-тормозные) к каждому типу нейронов. Нейронная сеть в целом активируется ретикулярной формацией (АРС); бульбоспинальные нейроны (Ибс) передают команды на мотонейроны инспираторных мышц

Так, если раздуть легкие, то вдох рефлекторно тормозится и начинается выдох. Напротив, если существенно уменьшить объем легких, то произойдет глубокий вдох. Это свидетельствует о том, что к дыхательным центрам постоянно поступает импульсация, сигнализирующая о степени растяжения легких, и под влиянием этой импульсации по принципу отрицательной обратной связи запускается соответствующее дыхательное движение. В честь авторов, открывших этот механизм, он носит название рефлекс Геринга-Брейера.

Дуга этого рефлекса начинается от рецепторов растяжения легочной паренхимы. Подобные рецепторы можно также обнаружить в трахее, бронхах и бронхиолах. Некоторые из этих рецепторов реагируют на степень растяжения легочной гкани пачками импульсов, параметры которых свидетельствуют о слабовыраженной способности к адаптации: другие же рецепторы возбуждаются лишь при