Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ШМИДТ ТЕВС том 2.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
6.9 Mб
Скачать

Глава 21. Легочное дыхание 591

о том, насколько величина напряжения О2 в крови приближается к его величине в альвеолах. Диффузионную способность легких, как и альвеолярную вентиляцию, следует рассматривать в отношении к легочной перфузии . Главным показателем эффективности газообмена в альвеолах служит величина отношении [18, 46]. Снижение этой

величины указывает на нарушение диффузии.

21.5. Легочная перфузия и оксигенация крови в легких Легочная перфузия

Сосудистое сопротивление. Величина легочного кровотока (перфузии) в покое составляет 5-6 л/мин, а движущей силой для него служит разница средних давлений всего около 8 мм рт. ст. (1 кПа) между легочной артерией и левым предсердием. Следовательно, сопротивление легочных сосудов по сравнению с общим периферическим чрезвычайно мало (с. 545). При тяжелой физической работе легочный кровоток увеличивается в четыре раза, а давление в легочной артерии - всего в два раза. Таким образом, с повышением скорости кровотока снижается сопротивление легочных сосудов.

Это уменьшение сосудистого сопротивления происходит пассивно в результате расширения легочных сосудов и раскрытия резервных капилляров. В покое кровь протекает примерно лишь через 50% всех легочных капилляров, а по мере возрастания нагрузки доля перфузируемых капилляров возрастает. Параллельно увеличивается и площадь газообменной поверхности (т.е. диффузионной способности легких; с. 589), и благодаря этому достигается соответствие поглощения О2 и выделения СО2 метаболическим потребностям организма.

На сопротивление легочных сосудов кровотоку в известной мере влияют дыхательные экскурсии грудной клетки. При вдохе артерии и вены расширяются, что связано с увеличением степени растяжения эластических волокон, крепящихся к их наружным стенкам. Однако одновременно повышается сопротивление капилляров, так как они растягиваются в длину и, следовательно, сужаются. Поскольку эффект повышения капиллярного сопротивления преобладает, сопротивление легочных сосудов в целом по мере расширения легких возрастает [32].

Местные различия в легочном кровотоке. Легочный кровоток отличается выраженной региональной неравномерностью, степень которой зависит в основном от положения тела. При его вертикальном положении основания легких снабжаются кровью значительно лучше, чем верхушки. Это связано с разницей в гидростатическом давлении: верхушки легких располагаются на 30 см выше оснований, и вследствие этого между сосудами этих отделов создается перепад гидростатического давления

примерно 23 мм рт. ст. (3 кПа). Это означает, что артериальное давление в верхних отделах легких ниже, чем альвеолярное, поэтому капилляры здесь почти спавшиеся. В нижних же отделах капилляры более расширены, так как внутрисосудистое давление больше альвеолярного. Вследствие таких местных различий в сосудистом сопротивлении кровоток в пересчете на единицу объема легких почти линейно снижается в направлении от основания легких к их верхушкам [31, 32]. При физической нагрузке и при горизонтальном положении тела легочный кровоток более равномерен.

Гипоксическая вазоконстрикция. Еще один фактор, влияющий на местный кровоток в легких, - это состав газовой смеси в альвеолах того или иного отдела. Так, снижение парциального давления О2 в альвеолах приводит к сужению артериол и. следовательно, к уменьшению кровотока (феномен Эйлера-Лилиестранда). В результате такого повышения сосудистого сопротивления, вызванного гипоксией, количество крови, протекающей через плохо вентилируемые участки легких, снижается, и кровоток перераспределяется в пользу хорошо вентилируемых отделов. Тем самым местная перфузия в известной мере приспосабливается к местной альвеолярной вентиляции . Однако этот механизм не может предупредить возникновение местных неравномерностей соотношения , в

частности в патологических условиях.

Венозно-артериальные шунты. Большая часть выбрасываемой правым сердцем крови имеет диффузионный контакт с поверхностью альвеол, однако небольшой объем этой крови не участвует в газообмене. Эта часть крови смешивается с оксигенированной кровью перед тем. как попадает в системное кровообращение (так называемый шунтовой кровоток). Существуют естественные анатомические шунты малые сердечные вены Тебезия, открывающиеся в левый желудочек, и бронхиальные вены. Сосуды перфузируемых, но не вентилируемых альвеол представляют собой функциональные шунты. По любым из этих шунтов кровь из системных вен поступает в артерии большого круга, минуя участки, в которых происходит газообмен, поэтому состав ее не изменяется. Несмотря на то что у здорового человека на долю такого шунтового кровотока приходится всего около 2% общего сердечного выброса, напряжение О2 в артериях после перемешивания с этой кровью снижается на 5-10 мм рт. ст. по сравнению со средним напряжением О2 в конечных отделах капилляров легких. При врожденных пороках сердца (например, неэаращении межжелудочковой перегородки) или сосудов (например, неэаращении артериального протока) через шунты сбрасывается значительно больший объем крови, что приводит к гипоксии (пониженное напряжение О2) и гиперкапнии (повышенное содержание СО2).

Факторы, влияющие на газообмен. Основные факторы, от которых зависят насыщение крови

592 ЧАСТЬ VI. ДЫХАНИЕ

Рис. 21.24. Схема действия факторов, влияющих на газообмен в легких [8]

в легких кислородом и удаление из нее углекислого газа, - это алъвеолярная вентиляция , перфузия легких и диффузионная способность легких Dл (рис. 21.24). Мы убедились в том, что эффективность дыхания определяется не столько этими тремя факторами как таковыми, сколько их соотношениями, в частности (с. 588, 591) [31, 46]. Еще один фактор, влияющий на газообмен, это местная неравномерность вентиляции, перфузии и диффузии в различных отделах легких [12, 18. 46]. Вследствие этой неравномерности газообмен происходит менее эффективно: напряжение О2 в крови артерий большого круга снижается, а напряжение СО2 слегка повышается.

Неравномерность вентиляционно-перфузионного соотношения. Неравномерное распределение соотношения в различных отделах легких имеет особое значение как при нормальной, так и при патологической физиологии. Для того чтобы оценить это распределение, были разработаны различные методики. Региональное распределение альвеолярной вентиляции исследуют с помошью радиоактивного газа (например, 133Хе), добавляя его во вдыхаемый испытуемым воздух, а затем измеряя радиоактивность над разными участками грудной клетки. Таким же образом изучают и распределение перфузии: вводят внутривенно раствор, содержащий радиоактивный газ; при прохождении крови через легкие этот газ диффундирует в альвеолы; об

объеме локальной перфузии легких судят по величине радиоактивности над разными участками грудной клетки. В сочетании оба этих метода позволяют количественно оценивать региональное распределение [31, 32].

На рис. 21.25 приведены результаты подобного исследования у здорового человека при горизонтальном положении тела. Вверху изображены точки, в которых производили измерения. Кривая внизу дает значения (по оси абсцисс) и (по оси ординат) в альвеолах для различ-

ных значений , т. е. величины парциального давления дыхательных газов, которые определяются условиями газообмена в различных участках легких. В области верхушек легких составляет 3.0; парциальные дав-

ления дыхательных газов при этом равны: =131 мм рт. ст., РСО2 = 29 мм рт. ст. В области же основания легких

= 0,65; в этом случае РО2 = 89 мм рт. ст. и РСО2 = 42 мм рт. ст. В других участках легких имеются соответствующие промежуточные значения. Эти местные различия в вентиляционно-перфузионном соотношении обусловлены главным образом неравномерным распределением легочного кровотока; альвеолярная вентиляция также увеличивается в направлении от верхушек легких к основаниям, но значительно меньше, чем перфузия (с. 591).

На рис. 21.26 изображены физиологические последствия неравномерности соотношения вентиляции и перфузии в легких. Для простоты альвеолярное пространство представлено лишь двумя участками, расположенными один над другим. Указанные величины альвеолярной вентиляции и перфузии относятся к обоим легким. При таких значениях

Рис. 21.25. Местные различия в вентиляционно-перфузионном соотношении (по [31] с изменениями). Красная кривая: значения (по оси абсцисс) и (по оси ординат) для разных величин в различных участках легких. И - парциальное давление во вдыхаемом воздухе; ν парциальное давление в смешанной венозной крови