- •Часть IV. Процессы нервной и гуморальной регуляции Глава 15. Общие принципы регуляции. М. Циммерман
- •15.1. Основные элементы цепей управления в биологии и технике Отличия рефлексов от систем управления
- •Структура системы управления
- •Глава 15. Общие принципы регуляции 335
- •Рефлекс растяжения — система для регуляции длины мышц
- •15.2. Динамическое и статическое поведение цепей управления Реакция на ступенчатое воздействие
- •Глава 15. Общие принципы регуляции 337
- •Работа следящей системы
- •Глава 15. Общие принципы регуляции 339
- •Работа системы управления в стационарном режиме
- •15.3. Особые свойства систем управления
- •Глава 15. Общие принципы регуляции 341
- •Сопряжение систем управления
- •15.4. Литература
- •Глава 16 вегетативная нервная система. В. Ениг
- •16.1. Периферический отдел вегетативной нервной системы Анатомическое подразделение вегетативной нервной системы
- •Глава 16. Вегетативная нервная система 345
- •Влияние симпатических и парасимпатических волокон на эффекторные органы
- •Глава 16. Вегетативная нервная система 347
- •Нейрогуморальная передача в периферическом отделе вегетативной нервной системы
- •Глава 16. Вегетативная нервная система 349
- •Мозговое вещество надпочечников. Общее действие адреналина и норадреналина
- •Глава 16. Вегетативная нервная система 351
- •Синаптическая организация периферического отдела вегетативной нервной системы
- •Глава 16. Вегетативная нервная система 353
- •Энтеральная нервная система
- •Глава 16. Вегетативная нервная система 355
- •Тонус вегетативных нервов в покое
- •Глава 16. Вегетативная нервная система 357
- •Спинальные вегетативные рефлексы
- •Глава 16. Вегетативная нервная система 359
- •Регуляция вегетативных функций на уровне ствола головного мозга
- •Глава 16. Вегетативная нервная система 361
- •16.3. Мочеиспускание и дефекация Нервная регуляция опорожнения мочевого пузыря
- •Глава 16. Вегетативная нервная система 363
- •Нервная регуляция опорожнения кишечника
- •Глава 16. Вегетативная нервная система 365
- •16.4. Половые рефлексы
- •Половые рефлексы у мужчин
- •Глава 16. Вегетативная нервная система 367
- •Половые рефлексы у женщин
- •Изменение других органов во время полового цикла
- •Глава 16. Вегетативная нервная система 369
- •16.5. Функции гипоталамуса
- •Функциональная анатомия гипоталамуса
- •Гипоталамо-гипофизарная система
- •Глава 16. Вегетативная нервная система 371
- •Гипоталамус и сердечно-сосудистая система
- •Глава 16. Вегетативная нервная система 373
- •Гипоталамус и поведение
- •16.6. Лимбическая система и поведение
- •Глава 16. Вегетативная нервная система 375
- •Элементы лимбической системы
- •Глава 16 вегетативная нервная система 377
- •Функции лимбической системы
- •Лимбическая система и эмоции
- •Глава 16. Вегетативная нервная система 379
- •Моноаминергические системы и поведение
- •Глава 16. Вегетативная нервная система 381
- •16.7. Литература
- •Глава 16. Вегетативная нервная система 383
- •Глава 17. Эндокринология. В. Вутке
- •17.1. Общая эндокринология Гормоны как носители информации
- •Глава 17. Эндокринология 385
- •Синтез и распад гормонов
- •Новые аспекты эндокринологии
- •Глава 17. Эндокринология 387
- •Методы изучения
- •Эндокринные цепи регуляции
- •Глава 17. Эндокринология 389
- •17.2. Система задней доли гипофиза Функциональная организация
- •Антидиуретический гормон
- •Глава 17. Эндокринология 391
- •Окситоцин
- •17.3. Система передней доли гипофиза
- •Гормоны аденогипофиза
- •Глава 17. Эндокринология 393
- •Регуляция секреции аденогипофиза
- •Гормон роста
- •Глава 17. Эндокринология 395
- •Пролактин
- •Глава 17. Эндокринология 397
- •17.4. Система щитовидной железы Образование и секреция тиреоидных гормонов
- •Глава 17. Эндокринология ш-
- •Функции тиреоидных гормонов
- •Патофизиологические аспекты
- •17.5. Система коры надпочечников
- •Глюкокортикоиды
- •Клетки, секретирующие проопиомеланокортин.
- •Глава 17. Эндокринология 401
- •Глава 17. Эндокринология 403
- •Андрогены надпочечников
- •Минералокортикоиды
- •Краткая характеристика стероидных гормонов
- •Глава 17. Эндокринология 405
- •17.6. Гормоны поджелудочной железы
- •Инсулин
- •Глава 17. Эндокринология 407
- •Глюкагон
- •Соматостатин
- •Регуляция уровня глюкозы
- •Глава 17. Эндокринология 409
- •Патофизиологические аспекты
- •17.7. Гомеостаз баланса кальция и фосфата
- •Гормональная регуляция
- •Патофизиология гомеостаза кальция
- •Глава 17. Эндокринология 411
- •17.8. Гормоны мозгового слоя надпочечников Катехоламины
- •17.9. Дополнительные эндокринные системы
- •17.10. Литература
- •Глава 17. Эндокринология 413
- •Часть V. Кровь и система кровообращения Глава 18 функции крови. X. Вайс, в. Елькманн
- •18.1. Основные положения
- •Функции крови
- •Объем крови
- •Гематокрит
- •Глава 18. Функция крови 415
- •18.2. Плазма крови
- •Электролиты плазмы
- •Глава 18. Функция крови 417
- •Б елки плазмы
- •Глава 18. Функция крови 4ш
- •Глава 18. Функция крови 421
- •18.3. Эритроциты Число, форма и размеры
- •Глава 18. Функция крови 423
- •Образование, продолжительность жизни и разрушение эритроцитов
- •Метаболизм и свойства мембран эритроцитов
- •Глава 18. Функция крови 425
- •Особые физико-химические свойства эритроцитов
- •18.4. Лейкоциты Общие свойства и образование лейкоцитов
- •Глава 18. Функция крови 427
- •Гранулоциты
- •Глава 18. Функция крови 429
- •Моноциты
- •Лимфоциты
- •Число лейкоцитов: методы подсчета и патологические сдвиги
- •18.5. Тромбоциты
- •Глава 18. Функция крови 431
- •18.6. Остановка кровотечения и свертывание крови Гемостаз
- •Глава 18. Функция крови 433
- •Свертывание крови и факторы свертывания
- •Глава 18. Функция крови 437
- •Фибринолиз
- •Глава 18. Функция крови 439
- •18.7. Защитная функция крови Классификация защитных механизмов
- •Специфические защитные механизмы
- •Глава 18. Функция крови 441
- •Глава 18. Функция крови 443
- •Глава 18. Функция крови 445
- •Неспецифические гуморальные защитные механизмы
- •Глава 18. Функция крови 447
- •Неспецифические клеточные защитные механизмы
- •Важнейшие этапы иммунного ответа
- •Глава 18. Функция крови 449
- •18.8. Группы крови человека
- •Система аво
- •Глава 18. Функция крови 451
- •Система Rh
- •Переливание крови
- •18.9. Литература
- •Глава 18. Функция крови 453
- •Глава 19. Функция сердца. Г. Антони
- •19.1. Строение и общая физиология сердца
- •Глава 19. Функция сердца 455
- •19.2. Основные механизмы возбуждения и электромеханического сопряжения в сердце
- •Возникновение и распространение возбуждения
- •Глава 19. Функция сердца 457
- •Характеристики процесса возбуждения на клеточном уровне
- •Глава 19. Функция сердца 459
- •Глава 19. Функция сердца 461
- •Связь между возбуждением и сокращением (электромеханическое сопряжение)
- •Вегетативная иннервация сердца; основные механизмы действия медиаторов вегетативной нервной системы
- •Глава 19. Функция сердца 463
- •464 Часть V. Кровь и система кровообращения
- •Глава 19. Функция сердца 465
- •19.3. Электрокардиография
- •Глава 19. Функция сердца 467
- •Происхождение экг
- •Глава 19. Функция сердца 469
- •Глава 19. Функция сердца 471
- •Отведения экг
- •Отведения от конечностей
- •Глава 19. Функция сердца 473
- •Использование экг в диагностике
- •Некоторые патологические типы экг
- •Глава 19. Функция сердца 475
- •Глава 19. Функция сердца 477
- •19.4. Механическая работа сердца
- •Функция клапанов сердца
- •Глава 19. Функция сердца 479
- •Сердечный цикл
- •Период нзоволюметрнческого расслабления.
- •Глава 19. Функция сердца 481
- •Функциональная анатомия и геометрия сокращения желудочков
- •Глава 19. Функция сердца 483
- •Инвазивные методы исследования сердца: внутрисердечные измерения
- •Глава 19. Функция сердца 485
- •19.5. Приспособление сердечной деятельности к различным нагрузкам
- •Причины изменений максимумов давления и объема.
- •Глава 19. Функция сердца 487
- •Саморегуляторные реакции сердца на кратковременные нагрузки объемом и давлением
- •Глава 19. Функция сердца 489
- •Динамика иннервируемого сердца in situ
- •Глава 19. Функция сердца 491
- •Приспособление сердца к длительной физической нагрузке
- •19.6. Энергетика сокращения сердца
- •Мощность и работа сердца
- •Глава 19. Функция сердца 493
- •Потребление кислорода я питательных веществ
- •Кровоснабжение миокарда
- •Глава 19. Функция сердца 495
- •Глава 19. Функция сердца 497 Сердечная недостаточность
- •19.7. Литература
- •Глава 20. Функции сосудистой системы. Э. Вицлеб
- •Глава 20. Функции сосудистой системы 499
- •20.1. Основы гемодинамики
- •Физические основы гемодинамики
- •Глава 20. Функции сосудистой системы 501
- •Типы течений жидкости
- •Взаимосвязь между объемной скоростью тока жидкости и гидродинамическим сопротивлением
- •Глава 20. Функции сосудистой системы 503
- •20.2. Свойства стенок и изменения диаметра сосудов Строение стенок сосудов
- •Трансмуральное давление, диаметр сосудов и напряжение в стенке
- •Взаимосвязь между давлением в сосудах и их объемом
- •Глава 20. Функции сосудистой системы 505
- •20.3. Функциональная организация сосудистой системы Функциональные группы сосудов
- •Глава 20. Функции сосудистой системы 507
- •Сопротивление в кровеносной системе
- •О бъем крови в кровеносной системе
- •Глава 20. Функции сосудистой системы 509
- •20.4. Артериальный отдел большого круга кровообращения
- •Кровоток в артериях
- •Давление в артериальном русле
- •Глава 20. Функции сосудистой системы 511
- •Влияние эластических свойств сосудов иа гемодинамику
- •Глава 20. Функции сосудистой системы 513
- •Исследование пульса
- •Глава 20. Функции сосудистой системы 515
- •20.5. Венозный отдел большого круга кровообращения Давление и скорость кровотока в венозном русле
- •Глава 20. Функции сосудистой системы 517
- •Центральное венозное давление и венозный возврат
- •Механизмы, способствующие венозному возврату
- •Глава 20. Функции сосудистой системы 519
- •20.6. Микроциркуляция Терминальное (микроциркуляторное) сосудистое русло
- •Глава 20. Функции сосудистой системы 521
- •Глава 20. Функции сосудистой системы 523
- •20.7. Лимфатическая система
- •Глава 20. Функции сосудистой системы 525
- •20.8. Регуляция регионального (локального) кровообращения Основные особенности регуляции регионального кровообращения
- •Местные регуляторные механизмы
- •Глава 20. Функции сосудистой системы 527
- •Нервная регуляция
- •Глава 20. Функции сосудистой системы 529
- •Влияние химических и гормональных факторов
- •Глава 20. Функции сосудистой системы 531
- •20.9. Регуляция системной гемодинамики Основные принципы регуляции системного кровообращения
- •Барорецепторные рефлексы
- •Глава 20. Функции сосудистой системы 533
- •Глава 20. Функции сосудистой системы 535
- •Рефлексы с рецепторов растяжения сердца
- •Рефлексы с артериальных хеморецепторов
- •Реакция на ишемию цнс
- •Влияние адреналина и норадреналина на сердечно-сосудистую систему
- •Глава 20. Функции сосудистой системы 537
- •Промежуточные (по времени) регуляторные механизмы
- •Релаксация напряжения в сосудистой стенке.
- •Регуляторные механизмы длительного действия
- •Глава 20. Функции сосудистой системы 539
- •Глава 20. Функции сосудистой системы 541
- •Центральная регуляция кровообращения
- •Глава 20. Функции сосудистой системы 543
- •20.10. Легочное кровообращение Гемодинамические особенности легочного кровообращения
- •Глава 20. Функции сосудистой системы 545
- •Функциональные особенности
- •Регуляция легочного кровообращения
- •20.11. Кровообращение при различных физиологических и патологических состояниях Артериальное давление у человека
- •Глава 20. Функции сосудистой системы 547
- •Глава 20. Функции сосудистой системы 549
- •Влияние положения тела на гемодинамику
- •Глава 20. Функции сосудистой системы 551
- •Физическая нагрузка
- •Температурный стресс
- •Кровопотеря
- •Глава 20. Функции сосудистой системы 553
- •Сердечно-сосудистый шок
- •Глава 20. Функции сосудистой системы 555
- •20.12. Кровообращение в отдельных органах и его регуляция Коронарное кровообращение
- •Мозговое кровообращение
- •Кровообращение в печеночных и портальных сосудах
- •Глава 20. Функции сосудистой системы 557
- •Почечное кровообращение
- •Кровообращение в скелетных мышцах
- •Кожное кровообращение
- •Глава 20. Функции сосудистой системы 559
- •Кровообращение в матке и у плода
- •20.13. Измерение давления, кровотока и объема крови в сердечно-сосудистой системе Измерение давления
- •Глава 20. Функции сосудистой системы 561
- •Измерение кровотока
- •Глава 20. Функции сосудистой системы 563
- •Измерение объема крови
- •Глава 20. Функции сосудистой системы 565
- •20.14. Литература
- •Часть VI дыхание Глава 21. Легочное дыхание. Г. Тевс
- •21.1. Дыхательные движения Дыхательные экскурсии грудной клетки
- •Глава 21. Легочное дыхание 569
- •Функции воздухоносных путей
- •Функции альвеол
- •Глава 21. Легочное дыхание 571
- •21.2. Легочная вентиляция Легочные объемы и емкости
- •Глава 21. Легочное дыхание 573
- •Измерение легочных объемов
- •Анатомическое и функциональное мертвое пространство
- •Глава 21. Легочное дыхание 575
- •Искусственное дыхание
- •Глава 21. Легочное дыхание 577
- •21.3. Механика дыхания
- •Упругие (эластические) сопротивления
- •Статические кривые объем-давление
- •Глава 21. Легочное дыхание 579
- •Неэластическое сопротивление
- •Глава 21. Легочное дыхание 581
- •Соотношение между давлением и объемом в ходе дыхательного цикла
- •Глава 21. Легочное дыхание 583
- •Дыхательные пробы
- •Определение типа нарушения вентиляции
- •Глава 21. Легочное дыхание 585
- •21.4. Газообмен Содержание газов в альвеолах
- •Глава 21. Легочное дыхание 587
- •Парциальные давления дыхательных газов
- •Глава 21. Легочное дыхание 589
- •Диффузия дыхательных газов
- •Глава 21. Легочное дыхание 591
- •21.5. Легочная перфузия и оксигенация крови в легких Легочная перфузия
- •Глава 21. Легочное дыхание 593
- •21.6. Центральный генез дыхательного ритма и регуляция дыхания
- •Центральный ритмогенез
- •Глава 21. Легочное дыхание 595
- •Глава 21. Легочное дыхание 597
- •Влияние химических факторов
- •Глава 21. Легочное дыхание 599
- •Влияние других факторов на дыхание
- •Глава 21. Легочное дыхание 601
- •Глава 21. Легочное дыхание 603
- •21.7. Литература
- •Глава 22. Транспорт газов кровью и кислотно-щелочное равновесие. Г. Тевс
- •22.1. Структура и свойства гемоглобина Строение молекулы гемоглобина
- •Поглощение света гемоглобином
- •Глава 22. Транспорт газов крови 607
- •Содержание гемоглобина в крови; среднее содержание гемоглобина в эритроците
- •Глава 22. Транспорт газов крови 609
- •22.2. Перенос кислорода кровью Физическая растворимость газов
- •Связывание кислорода гемоглобином
- •Глава 22. Транспорт газов крови 611
- •Факторы, влияющие на кривую диссоциации оксигемоглобина
- •Глава 22. Транспорт газов крови 613
- •Связывание гемоглобина с оксидом углерода
- •22.3. Перенос со2 кровью Формы транспорта со2
- •Глава 22. Транспорт газов крови 615
- •Сатурационные кривые co2 1)
- •22.4. Кислотно-щелочное равновесие крови pH крови
- •Глава 22. Транспорт газов крови 617
- •Буферные свойства крови
- •Глава 22. Транспорт газов крови 619
- •Механизмы регуляции pH
- •Глава 22. Транспорт газов крови 621
- •Глава 22. Транспорт газов крови 623
- •Оценка кислотно-щелочного равновесия
- •22.5. Литература
- •Глава 22. Транспорт газов крови 625
- •Глава 23. Тканевое дыхание. Й. Гроте
- •23.1. Тканевой метаболизм и потребности тканей в кислороде Обмен веществ и преобразование энергии в клетках.
- •Биологическое окисление в митохондриях
- •Глава 23. Тканевое дыхание 627
- •Потребность тканей в кислороде
- •Глава 23. Тканевое дыхание 629
- •23.2. Снабжение тканей кислородом Запасы кислорода в тканях
- •Поступление кислорода к тканям и его утилизация
- •Глава 23. Тканевое дыхание 631
- •Обмен дыхательных газов в тканях
- •Напряжение (парциальное давление) о2 в тканях
- •Глава 23. Тканевое дыхание 633
- •Глава 23. Тканевое дыхание 635
- •Распределение парциального давления о2 в работающих скелетных мышцах
- •23.3 Регуляция снабжения тканей кислородом и кислородное голодание Механизмы, обеспечивающие соответствие поступления кислорода потребности в нем
- •Глава 23. Тканевое дыхание 637
- •Причины недостаточного снабжения тканей кислородом
- •Кислородотерапия; кислородное отравление
- •Глава 23. Тканевое дыхание 639
- •Обратимые и необратимые нарушения при острой тканевой аноксни
- •23.4. Литература
- •Глава 23. Тканевое дыхание 641
- •Оглавление
- •Электронное оглавление
- •Электронное содержание
- •Глава 17. Эндокринология. В. Вутке 82
- •Часть V. Кровь и система кровообращения 126
- •Глава 18 функции крови. X. Вайс, в. Елькманн 126
- •Глава 19. Функция сердца. Г. Антони 188
- •Глава 20. Функции сосудистой системы. Э. Вицлеб 248
- •Часть VI дыхание 345
- •Глава 21. Легочное дыхание. Г. Тевс 345
- •Глава 22. Транспорт газов кровью и кислотно-щелочное равновесие. Г. Тевс 392
- •Глава 23. Тканевое дыхание. Й. Гроте 420
Измерение кровотока
Для измерения кровотока используют множество процедур, основанных на самых разных физических принципах. Наиболее важное значение имеют те из общепринятых способов, при которых кровоток измеряется в интактном сосуде.
Электромагнитная флоуметрии. При использовании электромагнитной флоуметрии сосуд помещают между полюсами электрического магнита, так что силовые линии пересекают длинную ось сосуда. Когда кровь, представляющая собой раствор электролитов, проходит через магнитное поле, возникает напряжение, направленное перпендикулярно силовым линиям и кровотоку. Это напряжение можно измерить при помощи электродов, соответствующим образом расположенных на наружной стенке сосуда. Поскольку регистрируемое напряжение в каждый момент времени пропорционально расходу крови, этот метод позволяет подробно изучать пульсирующий кровоток. При помощи вживленных датчиков можно производить длительную регистрацию кровотока в сосудах диаметром от 1 мм и выше, вплоть до аорты.
Ультразвуковая флоуметрии. Этот метод основан на измерении времени прохождения ультразвуковых волн. Сосуд помещают между двумя половинами цилиндрической трубки, с обоих концов которой на противоположных сторонах находятся кристаллы. Эти кристаллы действуют попеременно как источники и приемники ультразвукового сигнала, проходящего через сосуд по диагонали. Время прохождения сигнала в направлении кровотока меньше, чем в обратном направлении; это время измеряют при помощи электронного устройства и по разнице затраченного времени вычисляют объемную скорость кровотока в сосуде.
Существует еще один, чрескожный (т. е. не требующий повреждения кожи) ультразвуковой метод определения
Глава 20. Функции сосудистой системы 563
линейной скорости кровотока в поверхностных сосудах. При использовании этого метода ультразвуковые волны посылают через сосуд в диагональном направлении с помощью одного кристалла, а отраженные волны улавливают другим. В соответствии с эффектом Допплера, когда частицы крови движутся по направлению к воспринимающему кристаллу, частота отраженных волн выше, чем испускаемых передатчиком, и наоборот. Таким образом, разница между исходной и отраженной частотами пропорциональна скорости движения частиц крови.
При использовании аппаратуры, позволяющей одновременно измерить диаметр сосуда, можно также определить объемную скорость кровотока.
Термоэлектрические методы. При помощи методов, основанных на изменениях теплопроводности тканей в зависимости от их кровоснабжения, можно производить длительные измерения относительных колебаний местного кровотока. Для этого используют два термоэлектрических элемента, представляющих собой биполярные электроды. Один из них при помощи электрического тока подогревается до постоянной температуры, немного большей температуры окружающих тканей. Об изменениях кровотока судят по разнице температур между нагретым и ненагретым электродами (температура последнего такая же, как и ткани). При увеличении кровотока эта разница снижается, так как тепло быстрее проводится от нагретого элемента. Оба элемента можно вмонтировать в игольчатый термощуп, позволяющий измерить кожный и мышечный кровоток у человека. В опытах на животных такие термощупы используют также для определения кровотока в миокарде, печени и головном мозге.
Окклюзиоииая плетизмография. При этом методе исследования объемную скорость кровотока в артериях оценивают по тому, насколько увеличивается объем конечности (или части конечности) при прекращении венозного оттока. Для этого конечность помещают в жесткий, герметически закрывающийся сосуд. Выше сосуда на конечность накладывают надувную манжету и создают в ней давление, несколько меньшее диастолического. При этом венозный кровоток прекращается, а артериальный не страдает. В результате объем конечности увеличивается, и это увеличение объема регистрируется. Артериальный приток вычисляют, исходя из скорости нарастания объема конечности в первые моменты исследования. По мере того как вены наполняются кровью, давление в них повышается и через некоторое время превышает давление в манжете, что приводит к восстановлению венозного оттока. С этого момента устанавливается равновесие при новых значениях объема; при этом, если известно венозное давление, можно вычислить растяжимость сосуда (V/P). Измерить изменение объема конечности можно и с помощью более простого метода, поместив вокруг нее датчик растяжения, сигнал с которого пропорционален степени его растяжения, т.е. изменению окружности (а следовательно, и объема) конечности.
Измерение сердечного выброса у человека. Сердечный выброс у человека можно измерить при помощи непрямых методов, не требующих каких-либо серьезных хирургических процедур. Эти методы основаны либо непосред-
ственно на принципе Фика, либо на косвенно связанных с ним способах разведения индикатора.
В
соответствии с принципом
Фика поглощение
кислорода
легкими (
),
артериовенозная разница по кислороду
(ав
)
и легочный кровоток (
л)
связаны следующим
уравнением:
(21)
На рис. 20.45, А приведен пример расчета сердечного выброса (минутного объема, МО) в состоянии покоя.
В норме у человека легочный кровоток равен системному, поэтому полученные при использовании метода Фика данные можно переносить на выброс левого желудочка. Однако в связи с тем. что содержание кислорода в крови, оттекающей от разных органов, различно, веноз-
|
Рис. 20.45. Схема измерения сердечного выброса по способу Фика (А) и методу разведения индикатора (£). В случае Б вычисляется минутный объем плазмы (МОП); учитывая, что гематокрит равен примерно 45%, общий сердечный выброс составляет около 6500 мл/мин |
564 ЧАСТЬ V. КРОВЬ И СИСТЕМА КРОВООБРАЩЕНИЯ
ную кровь следует забирать при помощи катетера из легочной артерии, где она уже полностью перемешалась. Сердечный выброс можно измерять аналогичным образом, используя в качестве индикатора СО2 или небиологические газы-ацетилен, закись азота и т.д.
При использовании так называемых методов разведения в кровь как можно быстрее (а не постепенно, как при поглощении О2 по способу Фика) вводят определенное количество какого-либо индикатора -красителя, радиоактивного вещества, холодной жидкости и т.п. Концентрация индикатора в сосуде, расположенном «ниже» (по току крови) от места введения, отражает величину объема крови, в котором этот индикатор растворился и был перенесен к месту забора пробы. Содержание индикатора можно определить при помощи специальных кювет, через которые течет кровь, или путем быстрых заборов крови; можно также производить фотоэлектрическую запись без забора крови. В результате получают кривые разведения, обладающие некоторыми важными характеристиками (рис. 20.45, Б). Момент введения индикатора-это как бы точка отсчета (время введения, ВВ). После латентного периода (ЛП) концентрация индикатора в месте забора крови начинает повышаться, достигая первого пика Сmax (время концентрации, ВК). Таким образом, время достижения первого пика (ВПП) равно ЛП + ВК. Затем концентрация индикатора экспоненциально снижается, но через некоторое время наступает его рециркуляция (повторное поступление из различных сосудистых областей), и на кривой появляются новые пики концентрации. Время между первым и вторым пиками называется временем рециркуляции (ВРц). Для определения сердечного выброса необходимо получить кривую без рециркуляции, т.е. экстраполировать ее нисходящую часть. Это довольно просто осуществить графически, изобразив нисходящую часть кривой в логарифмическом масштабе. При этом нисходящая часть превращается в прямую линию; продолжая ее до пересечения с горизонтальной осью, получают так называемую первичную кривую, т.е. кривую, которая была бы записана в отсутствие рециркуляции. Расстояние между первым пиком и точкой пересечения нисходящей части кривой с осью абсцисс соответствует времени разведения (ВРа). Сумма ВК и ВРа равна времени пассажа (ВП).
Среднее время циркуляции (СВЦ), т.е. среднее время, необходимое для переноса всех частичек индикатора от места введения до места забора пробы, определяют как усредненное по времени значение интегрированной площади поверхности под первичной кривой. Для вычисления средней концентрации (Сср) ту же величину усредняют по концентрации.
Вычисление объема крови Vc, в котором растворяется и переносится от места введения до места забора пробы известное количество индикатора (И), производится следующим образом:
(22)
Знаменателем этой дроби является интеграл, равный площади под кривой зависимости концентрации от времени, соответствующей площади под первичной кривой. На практике эту площадь определяют при помощи планиметра или путем сложения площадей маленьких прямоугольников с одинаковым основанием t. В последнем случае величина площади под кривой равна
(23)
При внутривенном введении индикатора и измерении его среднего содержания в артериальной крови «сердечный выброс (минутный объем) плазмы» (МОП на рис. 20.45, Б) можно вычислить следующим образом:
(24)
Отсюда, делая поправку на гематокрит, рассчитывают общий сердечный выброс. В качестве индикатора часто используют синьку Эванса, а также индоциановый зеленый, который уже после первого прохождения через печень удаляется из кровотока, благодаря чему исследование можно повторять через небольшие интервалы времени. При помощи ЭВМ можно рассчитывать сердечный выброс непосредственно по кривым разведения индикатора.
Одним из вариантов метода разведения является термодилюция. В этом случае индикатором служит небольшое количество плазмы или солевого раствора, охлажденного до комнатной температуры; «изменение концентрации» на месте измерения представляет, по существу, изменение температуры. Подобные исследования можно быстро повторять, так как рециркуляции при этом методе нет.
Измерение времени кровотока. Исходя из латентного периода (ЛП) и среднего времени циркуляции (СВЦ) по кривым разведения, можно достаточно точно определить время кровотока между двумя точками сосудистой системы. Использование внутрисосудистых катетеров позволяет измерять время частичного кругооборота почти в любых отделах кровеносного русла. Существуют следующие показатели времени кровотока для здоровых взрослых людей: ЛП рука-ухо 8-12 с, ЛП легкие-ухо 3-5 с, ЛП рука-легкие 5-7 с, СВЦ рука-ухо 14-26 с. Время полного кругооборота -это время, за которое индикатор возвращается к месту введения.
Время кровотока в участках магистральных сосудов позволяет судить о сердечном выбросе: чем больше линейная скорость кровотока, тем больше объемная скорость, и наоборот. В периферических же сосудах это взаимоотношение не столь определенно, так как просвет этих сосудов может очень широко варьировать.
В клинике для определения времени частичного кругооборота обычно вводят внутривенно вещества, обладающие запахом или вкусом. Так, время кровотока от вены руки до капилляров легких можно приближенно оценить путем введения эфира; при выдыхании этого вещества улавливается характерный запах. Точно так же измеряют время кровотока при введении в вену руки дехолина или сахарина: когда вещество достигает языка (через 10-15 с после введения), человек ощущает горький или сладкий вкус. Однако такие методы весьма сомнительны; так, время появления в выдыхаемом воздухе эфира зависит от дыхательного цикла, и в любом случае возможна ошибка, связанная с индивидуальными различиями в пороге субъективного ощущения индикатора.
