Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ШМИДТ ТЕВС том 2.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
6.9 Mб
Скачать

Синаптическая организация периферического отдела вегетативной нервной системы

Адренергический нейрон. Нейроэффекторная передача. Большинство адренергических нейронов обладает длинными тонкими аксонами (рис. 16.1), многократно ветвящимися в органах и образующими так называемые адренергические сплетения. Согласно подсчетам, общая длина конечных ветвей такого нейрона может достигать 10-30 см. На этих ветвях имеются многочисленные (250-300 на 1 мм) расширения, в которых синтезируется, запасается и инактивируется норадреналин. При возбуждении адренергических нейронов норадреналин высвобождается из этих расширений во внеклеточное пространство. Поскольку при этом он выбрасывается из большого количества расширений, возбуждение адренергических нейронов действует не столько на одиночные гладкомышечные клетки, сколько на всю гладкомышечную ткань в целом. Отдельные гладкомышечные волокна соединяются друг с другом посредством контактов с низким электрическим сопротивлением (рис. 16.6) Благодаря таким «плотным контактам», или нексусам, постсинаптические потенциалы и потенциалы действия могут электротонически передаваться от клетки к клетке (на рис. 16.6, В и Г-клетки с прямой связью). Более удаленные клетки возбуждаются лишь под влиянием потенциалов действия, возникающих в том случае, когда постсинаптические потенциалы в непосредственно иннервируемых гладкомышечных клетках превышают пороговый уровень. Потенциалы действия распространяются в виде волны возбуждения по всей гладкомышечной ткани (рис. 16.6,5, Г, клетки с непрямой связью). Таким образом, деполяризация нескольких гладкомышечных клеток под действием медиатора приводит к одновременному сокращению всех клеток гладкой мышцы.

Плотность иннервации различных гладкомышечных органов значительно колеблется. В органах, характеризующихся особенно богатой иннервацией, на многих клетках имеются прямые нервно-мышечные соединения. В таких соединениях расстояние между расширением симпати-

352 ЧАСТЬ IV. ПРОЦЕССЫ НЕРВНОЙ И ГУМОРАЛЬНОЙ РЕГУЛЯЦИИ

ческого аксона и мембраной гладкомышечной клетки равно примерно 20 нм (рис. 16.6, Б, Г). Примером подобных органов могут служить семенной проток и ресничная мышца. В этом случае гладкомышечные клетки находятся целиком под нервным контролем; катехоламины крови на них, как правило, не действуют. Напротив, в большинстве кровеносных сосудов иннервируются почти исключительно адвентициальная оболочка и лишь внешние слои средней оболочки (расстояние между расширениями аксонов и гладкомышечными волокнами в нервно-мышечных соединениях сосудистой стенки составляет примерно 80 нм или более). На большую часть гладких мышц средней оболочки симпатические нервы оказывают непрямое влияние, опосредованное электротоническими воздействиями (рис. 16.6, А. Б). В результате такого неравномерного распределения иннервации на мускулатуру сосудов оказывают значительное влияние катехоламины, диффундирующие из крови в их стенки, так как эти катехоламины не инактивируются в результате поглощения их расширениями симпатических волокон.

На гладкие мышцы, прямая иннервация которых со стороны постганглионарных симпатических аксонов либо слабо выражена, либо отсутствует в связи с большим нервно-мышечным расстоянием, катехоламины крови оказывают более сильное действие. Примером могут служить гладкомышечные волокна крупных артерий эластического типа, циркулярных и продольных мышечных слоев кишечника и мускулатуры матки [2].

Гиперчувствительность вегетативных эффекторов после денервации. Органы, иннервируемые вегетативной системой, могут в какой-то мере атрофироваться в результате бездействия, но не подвергаются дегенерации при гибели снабжающих их нервов. Спустя 2-30 дней (для разных органов по-разному) после денервации или децентрализации (путем перерезки преганглионарных волокон) развивается гиперчувствительность органов к медиаторам вегетативной нервной системы и веществам медиаторного типа. Так, если разрушить симпатическую иннервацию зрачка животного путем удаления верхнего шейного ганглия, то сначала наблюдается сужение зрачка в результате преобладания парасимпатического тонуса (табл. 16.1). Через несколько недель зрачок вновь расширяется, причем степень его расширения увеличивается при эмоциональном возбуждении. Это явление связывают с гиперчувствительностью, или сенситизацией денервированной мышцы, расширяющей зрачок, к адреналину и норадреналину, выделяемым мозговым веществом надпочечников (см. с. 350). При эмоциональном возбуждении и испуге содержание этих веществ в крови повышается. После денервации гиперчувствительность обычно более выражена, чем после децентрализации.

Механизм денервационной гиперчувствительности до конца не ясен. Возможно, он связан с измене-

ниями электрофизиологических свойств мембран (уменьшением мембранного потенциала и порога возбуждения) и распределения кальция (увеличением кальциевой проницаемости мембран, повышением внутриклеточной концентрации кальция) в клетках денервированных органов. Все эти изменения вызваны отсутствием медиаторов, выделяемых обычно постганглионарными нейронами. Денервационную гиперчувствительность можно считать результатом адаптации чувствительности вегетативных эффекторов к уровню активности иннервирующих их постганглионарных нейронов. Если этот уровень постоянно понижен, то чувствительность эффектора повышается, и наоборот [1, 33].

Симпатические ганглии. Как уже указывалось, передача возбуждения от преганглионарных нейронов к постганглионарным в симпатических ганглиях осуществляется при помощи ацетилхолина (рис. 16.2). На каждом постганглионарном нейроне конвергирует множество преганглионарных аксонов, и, с другой стороны, ветви каждого преганглионарного аксона дивергируют к нескольким постганглионарным нейронам. Степень такой конвергенции и дивергенции чрезвычайно широко варьирует у животных разных видов и в разных симпатических ганглиях. Постганглионарных нейронов обычно значительно больше, чем преганглионарных аксонов. Так, в состав верхнего шейного ганглия человека входит 1 млн. постганглионарных нервных клеток, к которым подходит 10 тыс. преганглионарных волокон; таким образом, каждый преганглионарный аксон снабжает по меньшей мере 100 постганглионарных нейронов. Дивергенция и конвергенция обеспечивают высокую надежность проведения возбуждения в ганглиях. Большую роль играет пространственная и временная суммация постсинаптических потенциалов, так как одиночные импульсы, поступающие по преганглионарным волокнам, обычно не могут вызвать сверхпороговые постсинаптические потенциалы в постганглионарных нейронах. Кроме никотиноподобного эффекта, обеспечивающего передачу возбуждения в симпатическом ганглии, ацетилхолин и другие вещества, выделяемые пресинаптическими окончаниями, вызывают медленно нарастающие длительные деполяризующие и гиперполяризующие постсинаптические потенциалы. Эти медленные синоптические холинергические потенциалы связаны главным образом с мускариноподобным эффектом ацетилхолина (с. 347). Функциональное значение медленных постсинаптических потенциалов до сих пор неизвестно. Не исключено, что они участвуют в регуляции возбудимости постганглионарных нейронов, т.е. порога возникновения в них потенциалов действия. В этом случае симпатические ганглии следует считать простейшими интегративными центрами [9, 32].