Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ШМИДТ ТЕВС том 2.doc
Скачиваний:
0
Добавлен:
11.01.2020
Размер:
6.9 Mб
Скачать

Глава 19. Функция сердца 469

Рис. 19.15. Соотношение различных участков ЭКГ с фазами возбуждения сердца. Возбужденные участки показаны красным, участки в состоянии реполяризации розовым. Черные стрелки указывают направление и относительную величину интегрального вектора в отдельные моменты цикла возбуждения. Кривые, расположенные между изображениями ЭКГ и сердца,-это петли, описываемые концом сердечного вектора во фронтальной проекции (фронтальная векторкардиограмма). На каждом из рисунков приведены участки петли, соответствующие интервалу времени от начала возбуждения до той фазы, которая изображена на данном рисунке

разность потенциалов временно исчезает, так как потенциалы действия всех предсердных клеток находятся в стадии плато (рис. 19.14). В это время возбуждение распространяется по проводящей системе желудочков, однако общее количество возбуждающихся клеток при этом невелико и существенной разности потенциалов не возникает (сегмент PQ). Лишь при переходе возбуждения на рабочий миокард желудочков вновь появляются значительные градиенты напряжения. Возбуждение желудочков начинается с деполяризации левой поверхности межжелудочковой перегородки; при этом возникает интегральный вектор, направленный к основанию сердца (начало комплекса QRS). Затем вектор быстро меняет направление на противоположное (к верхушке), и формируется самый крупный зубец комплекса QRS. Это соответствует распространению

возбуждения через стенку желудочков от эндокарда к эпикарду. В последнюю очередь возбуждается участок правого желудочка в области основания легочного ствола; интегральный вектор в этот момент будет направлен вправо и вверх (конец комплекса QRS). Распространение возбуждения по желудочкам (комплекс QRS) совпадает с реполяризацией предсердий. Когда желудочки полностью охвачены возбуждением (сегмент ST), разность потенциалов между различными их отделами временно исчезает, как и при возбуждении предсердий (сегмент PQ). Затем следует фаза реполяризации желудочков (зубец Т). В течение всей этой фазы направление центрального вектора почти не изменяется: он ориентирован влево. Если бы реполяризация желудочков распространялась в том же направлении и с такой же скоростью, что и деполяризация, то

470 ЧАСТЬ V. КРОВЬ И СИСТЕМА КРОВООБРАЩЕНИЯ

векторы этих процессов должны были быть направлены в противоположные стороны. Однако этого не происходит по следующим причинам. Во-первых, реполяризация протекает значительно медленнее, чем деполяризация; во-вторых, скорость реполяризации в разных отделах сердца различна: в области верхушки реполяризация наступает раньше, чем у основания, а в субэпикардиальных слоях-раньше, чем в субэндокардиальных (рис. 19.15).

Величина и направление зубцов ЭКГ. Для того чтобы разобраться в соотношении между ориентацией вектора сердца и полярностью зубцов ЭКГ, необходимо рассмотреть электрическое поле вокруг диполя, помещенного в однородную проводящую среду (рис. 19.16). Точки зтого поля, обладающие одинаковыми потенциалами, образуют так называемые изопотенциальные линии. Из рис. 19.16, А и Б видно, что разность потенциалов (вольтаж) между точками А и Б зависит прежде всего от угла между осью диполя и осью отведения (прямой АБ) и равна проекции интегрального вектора на ось отведения. Если направление отведения совпадает с направлением интегрального вектора, величина регистрируемой разности потенциалов максимальна; если же эти направления взаимно перпендикулярны, разность потенциалов равна 0. В принципе это правило можно перенести и на ЭКГ человека (рис. 19.16, В), хотя на практике в этом случае картина значительно сложнее. Это связано с гем, что, во-первых, тело человека не является электрически однородной средой, во-вторых, сердце расположено не в центре сферического проводника. В связи с этим электрическое поле сердца на поверхности тела искажается.

Векторная петля и векторкарлиография (ВКГ).

Если принять, что во время одиночного цикла возбуждения сердца интегральный вектор исходит из одной точки, то конец зтого вектора будет описывать в пространстве особую фигуру - векторную петлю. На рис. 19.15 показано, как образуется эта петля в проекции на фронтальную плоскость при одиночном возбуждении. Векторную петлю можно выводить непосредственно на экран осциллоскопа при помощи векторкардиографии. Принцип этой методики представлен на рис. 19.17, где в качестве примера изображена проекция интегрального вектора на фронтальную плоскость. Горизонтально расположенные электроды соединяются через усилитель с пластинами горизонтального отклонения осциллографа и смещают его луч по оси х. Сигнал с другой - вертикальной - пары электродов подается на пластины вертикального отклонения и смещает луч по оси у. В результате луч смещается от центра экрана на расстояние, определяемое величинами сигналов по осям х и у, и занимает положение, соответствующее величине и направлению интег-

Рис. 19.16. А, Б. Биполярная запись электрического поля диполя в гомогенной среде с границами в виде окружности. В точках пересечения изопотенциальных линий с окружностью обозначены их относительные потенциалы. Поворот диполя (Б) при неизменном положении электродов приводит к снижению регистрируемого вольтвжв от 3 до 2 условных единиц. В. Проекция электрического поля, создаваемого диполем сердца в некий момент времени, на переднюю стенку грудной клетки. Точки R, L и F лежат в углах треугольника Эйнтховена (с. 473)

рального вектора (красная стрелка). Поскольку точно так же отображаются на экране векторы, соответствующие любому моменту цикла возбуждения, луч осциллографа в течение этого цикла описывает кривую, соединяющую концы этих векторов,-векторную петлю. Если расположить электроды в сагиттальной или горизонтальной плоскости, можно