- •I. Цитология с эмбриологией
- •1.Структурно- химический состав и молекулярная организация плазмолеммы
- •2.Надмембранный (гликокаликс) и подмембранный (кортикальный) компоненты плазмолеммы. Особенности строения и функции. Мембранные рецепторы
- •3.Молекулярная организация плазмолеммы. Пассивный и активный транспорт. Эндоцитоз и его разновидности
- •4.Специализированные структуры плазмолеммы: микроворсинки, реснички, базальный лабиринт (см и эм). Функции
- •5.Структура и типы рибосом (эм, химический состав, гистохимическая характеристика). Полисомы. Синтез цитоплазматических белков на свободных полисомах
- •6.Эндоплазматическая сеть. Строение, разновидности эпс. Структура гранулярной и агранулярной эндоплазматической сети (см,эм) и их функции
- •7. Комплекс Гольджи, (см и эм). Полярность комплекса Гольджи. Особенности процессинга молекул и направленный транспорт веществ
- •8. Структура и функции эндосом и лизосом. Типы эндосом и лизосом
- •9. Митохондрии (см и эм). Функции митохондрий
- •10. Цитоскелет. Компоненты цитоскелета. Строение, эм, химический состав, функции
- •11. Ядро. Понятие об интерфазном ядре. Структурные компоненты ядра (см,эм). Значение и функции ядра в жизнедеятельности клетки
- •12. Структура ядерной оболочки и ее молекулярная организация
- •13. Хроматин интерфазного ядра. Эухроматин и гетерохроматин. Уровни укладки хроматина. Роль гистоновых белков в обеспечении структуры хроматина
- •14. Ядрышко. Структура ядрышка (см и эм). Основные компоненты ядрышка. Роль ядрышка в синтезе рРнк и образовании рибосом
- •15. Клеточный конвейер при синтезе белка. Морфологическая характеристика клетки, синтезирующей белки
- •16. Клеточный конвейер при синтезе углеводов и липидов. Морфологические особенности клеток, синтезирующих углеводы и липиды
- •17. Экстрагонадное происхождение половых клеток. Морфофункциональная характеристика мужской половой клетки и место ее образования
- •18. Экстрагонадное происхождение половых клеток. Морфофункциональная характеристика женской половой клетки и место ее образования
- •19. Оплодотворение.Биологическое значение. Хронология процесса. Дистантное и контактное взаимодействие половых клеток
- •20. Основные принципы формирования провизорных органов эмбриона человека (амнион, желточный мешок, аллантоис, пуповина,хорион, плацента)
- •21. Функции внезародышевых структур эмбриона человека. Клиническая значимость гистологической организации плацентарного барьера и провизорных органов эмбриона человека
I. Цитология с эмбриологией
1.Структурно- химический состав и молекулярная организация плазмолеммы
Плазмолемма, или внешняя клеточная мембрана- поверхностная периферическая структура, ограничивающая клетку снаружи и обеспечивающая ее непосредственную связь с внеклеточной средой.
Функции плазмолеммы:
1) разграничительная (барьерная);
2) рецепторная;
3) антигенная;
4) транспортная;
5) образование межклеточных контактов
Химический состав веществ плазмолеммы: белки, липиды, углеводы. Основу плазмолеммы составляет липо-протеиновый комплекс. Она имеет толщину около 10 нм и, таким образом, является самой толстой из клеточных мембран.
Строение плазмолеммы:
1) двойной слой липидных молекул, составляющий основу плазмолеммы, в которую местами включены молекулы белков;
2) надмембранный слой гликокаликс (Находящиеся на внешней поверхности плазмолеммы белки и гидрофильные головки липидов связаные с цепочками углеводов).
Толщина этого слоя около 3—4 нм, он обнаружен практически у всех животных клеток, но степень его выраженности различна. Гликокаликс представляет собой ассоциированный с плазмолеммой гликопротеиновый комплекс, в состав которого входят различные углеводы. Углеводы образуют длинные, ветвящиеся цепочки полисахаридов, связанные с белками и липидами, входящими в состав плазмолеммы В гликокаликсе могут располагаться белки, не связанные непосредственно с билипидным слоем.
Как правило, это белки-ферменты, участвующие во внеклеточном расщеплении различных веществ, таких как углеводы, белки, жиры и др.
3) подмембранный слой. Подмембранный (кортикальный) слой плазмолеммы образован упорядоченной сетью поперечно связанных белковых нитей из актина и актинсвязанных белков (прежде всего филамина), которая выстилает изнутри поверхность плазматической мембраны.
Молекулярное строение плазмолеммы описывается жидкостно-мозаичной моделью, согласно которой она состоит из липидного бислоя, в который погружены молекулы белков.
Липидный бислой представлен преимущественно молекулами фосфолипидов (таких как лецитин и цефалин), состоящими из двух длинных неполярных (гидрофобных) цепей жирных кислот и полярной (гидрофильной) головки. В состав большинства мембран входит также холестерин.
Мембранные белки составляют более 50% массы мембран. Они удерживаются в липидном бислое за счет гидрофобных взаимодействий с молекулами липидов. Белки обеспечивают специфические свойства мембраны и играют различную биологическую роль: структурных молекул, ферментов, переносчиков и рецепторов. Мембранные белки подразделяются на 2 группы: интегральные и периферические.
Периферические белки непрочно связаны с поверхностью мембраны и обычно находятся вне липидного бислоя.
Интегральные белки либо полностью, либо частично погружены в липидный бислой; либо часть белков целиком пронизывает всю мембрану (трансмембранные белки).
2.Надмембранный (гликокаликс) и подмембранный (кортикальный) компоненты плазмолеммы. Особенности строения и функции. Мембранные рецепторы
Гликокаликс — «заякоренные» в плазмалемме молекулы олигосахаридов, полисахаридов, гликопротеинов и гликолипидов. Гликокаликс выполняет рецепторную и маркерную функции, а также участвует в обеспечении избирательности транспорта веществ и пристеночном (примембранном) пищеварении. Наличие гликокаликса характерно для клеток животных (в отличие от прокариотов, растений и грибов, где его нет.)
Гликокаликс представляет собой молекулярное сито, пропускающего или не пропускающего молекулы, в зависимости от их величины, заряда и других параметров. В слое гликокаликса располагаются пищеварительные ферменты, как поступающие туда из полости кишечника, так и синтезированные энтероцитами (общее название ряда клеток эпителия кишечника). Толщина гликокаликса равна приблизительно 15—40 нм на боковой поверхности энтероцита и 50—100 нм — на апикальной. Гликокаликс, микроворсинки и апикальная мембрана вместе называются исчерченной каёмкой.
Кортикальный слой образован микротрубочками и сократимыми, актиновыми микрофиламентами, которые являются частью цитоскелета клетки. Подмембранный слой обеспечивает поддержание формы клетки, изменения клеточной поверхности, участвует в эндо- и экзоцитозе, секреции, движении.
Мембранные рецепторы являются преимущественно гликопротеинами,
которые расположены на поверхности плазмолеммы клеток и обладают
способностью высокоспецифически связываться со своими лигандами. Они
выполняют ряд функций:
(1) регулируют проницаемость плазмолеммы
(2) регулируют поступление некоторых молекул в клетку
(3) действуют как датчики, превращая внеклеточные сигналы во
внутриклеточные;
(4) связывают молекулы внеклеточного матрикса с цитоскелетом, эти
рецепторы, называемые интегринами, играют важную роль в формировании
контактов между клетками и клеткой и компонентами межклеточного вещества.
Рецепторы, связанные с каналами, взаимодействуют с сигнальной
молекулой (нейромедиатором), которая временно открывает или закрывает
воротный механизм, в результате чего инициируется или блокируется
транспорт ионов через канал.
Каталитические рецепторы включают внеклеточную часть (собственно
рецептор) и цитоплазматическую часть, которая функционирует как
протеинкиназа (посредством таких рецепторов на клетки воздействуют
инсулин и некоторые факторы роста).
Рецепторы, связанные с G-белками - трансмембранные белки, ассоциированные с ионным каналом или ферментом, - состоят из рецептора,
взаимодействующего с сигнальной молекулой (первый посредник), и G-белка
(гуанозин трифосфат-связывающего регуляторного белка), который передает сигнал на связанный с мембраной фермент или ионный канал, вследствие чего активируется второй внутриклеточный посредник - чаще всего циклический АМФ (цАМФ) или Са2+.