Тема 2. Векторна алгебра
-
ІЗ – 2.1
1 |
За
даними координатами точок
,
і
|
|
а)
модуль (довжину) вектора
|
|
в)
проекцію вектора
|
|
|
|
|
|
|
|
|
|
|
(5, 4, 4) |
(-5, 2, 3) |
(4, 2, -5) |
|
|
|
|
|
|
(6, 5, -4) |
(-5, 2,2) |
(3, 3, 2) |
|
|
|
|
|
|
(2, 4, 3) |
(3, 1, -4) |
(-1, 2, 2) |
|
|
|
|
|
|
(-2, -3, -4) |
(2, -4, 0) |
(1, 4, 5) |
|
|
|
|
|
|
(2, 4, 6) |
(-3, 5, 1) |
(4, -5, -4) |
|
|
|
|
|
|
(-5, 4, 3) |
(4, 5, 2) |
(2, 7, -4) |
|
|
|
|
|
|
(3, 5, 4) |
(4, 2, -3) |
(-2, 4, 7) |
|
|
|
|
|
|
(-2, 3, -4) |
(3, -1, 2) |
(4, 2, 4) |
|
|
|
|
|
|
(3, 4, 1) |
(5, -2, 6) |
(4, 2, -7) |
|
|
|
|
|
|
(4, 6, 7) |
(2, -4, 1) |
(-3, -4, 2) |
|
|
|
|
|
|
(1, 3, 2) |
(-2, 4, -1) |
(1, 3, -2) |
|
|
|
|
|
|
(10, 6, 3) |
(-2, 4, 5) |
(3, -4, -6) |
|
|
|
|
|
|
(3, 4, 6) |
(-4, 6, 4) |
(5, -2, -3) |
|
|
|
|
|
|
(-3, -5, 6) |
(3, 5, -4) |
(2, 6, 4) |
|
|
|
|
|
|
(2, 4, 5) |
(1, -2, 3) |
(-1, -2, 4) |
|
|
|
|
|
|
(-2, -3, -2) |
(1, 4, 2) |
(1, -3, 3) |
|
|
|
|
|
|
(-4, -2, -5) |
(3, 7, 2) |
(4, 6, -3) |
|
|
|
|
|
|
(6, 4, 5) |
(-7, 1,8) |
(2, -2, -7) |
|
|
|
|
|
|
(-2, -2, 4) |
(1, 3, -2) |
(1, 4, 2) |
|
|
|
|
|
|
(0, 2, 5) |
(2, -3, 4) |
(3, 2, -5) |
|
|
|
|
|
|
(4, 5, 3) |
(-4, 2, 3) |
(5, -6, -2) |
|
|
|
|
|
|
(4, 3, 2) |
(-4, -3, 5) |
(6, 4, -3) |
|
|
|
|
|
|
(4, 6, 3) |
(-5, 2, 6) |
(4, -4, -3) |
|
|
|
|
|
|
(2, -4, 3) |
(-3, -2, 4) |
(0, 0, -2) |
|
|
|
|
|
|
(3, 2, 4) |
(-2, 1, 3) |
(2, -2, 1) |
|
|
|
|
|
|
(-5, -2, -6) |
(3, 4, 5) |
(2, -5, 4) |
|
|
|
|
|
|
(1, 3, 2) |
(-2, 4, -1) |
(1, 3, -2) |
|
|
|
|
|
|
(-1, -2, 4) |
(-1, 3, 5) |
(1, 4, 2) |
|
|
|
|
|
|
(5, 6, 1) |
(-2, 4, -1) |
(3, -3, 3) |
|
|
|
|
|
|
(4, 3,-2) |
(-3, -1, 4) |
(2, 2, 1) |
|
|
|
|
2 |
Довести, що вектори , і утворюють базис. Знайти координати |
|
вектора у цьому базисі |
|
|
|
|
|
|
|
(11, 1, 2) |
(-3, 3, 4) |
(-4, -2, 7) |
(-5, 11, -15) |
|
|
(4, 5, 1) |
(1, 3, 1) |
(-3, -6, 7) |
(19, 33, 0) |
|
|
(1, 3, 4) |
(-2, 5, 0) |
(3, -2, -4) |
(13, -5, -4) |
|
|
(5, 3, 1) |
(-1, 2, -3) |
(3, -4, 2) |
(-9, 34, -20) |
|
|
(3, 5, 4) |
(-2, 7, -5) |
(6, -2, 1) |
(6, -9, 22) |
|
|
(3, 1, 2) |
(-4, 3, -1) |
(2, 3, 4) |
(14, 14, 20) |
|
|
(2, -1, 4) |
(-3, 0, -2) |
(4, 5, -3) |
(0, 11, -14) |
|
|
(0, 2, -3) |
(4, -3, -2) |
(-5, -4, 0) |
(-19, -5, -4) |
|
|
(1, 3, 6) |
(-3, 4, -5) |
(1, -7, 2) |
(-2, 17, 5) |
|
|
(1, 2, 3) |
(-5, 3, -1) |
(-6, 4, 5) |
(-4, 11, 20) |
|
|
(-1, 4, 3) |
(3, 2, -4) |
(-2, -7, 1) |
(6, 20, -3) |
|
|
(-3, 0, 1) |
(2, 7, -3) |
(-4, 3, 5) |
(-16, 33, 13) |
|
|
(4, 2, 3) |
(-3, 1, -8) |
(2, -4, 5) |
(-12, 14, -31) |
|
|
(9, 5, 3) |
(-3, 2, 1) |
(4, -7, 4) |
(-10, -13, 8) |
|
|
(1, -3, 1) |
(-2, -4, 3) |
(0, -2, 3) |
(-8, -10, 13) |
|
|
(1, -1, 1) |
(-5, -3, 1) |
(2, -1, 0) |
(-15, -10, 5) |
|
|
(3, 1, -3) |
(-2, 4, 1) |
(1, -2, 5) |
(1, 12, -20) |
|
|
(5, 3, 2) |
(2, -5, 1) |
(-7, 4, -3) |
(36, 1, 15) |
|
|
(3, -1, 2) |
(-2, 4, 1) |
(4, -5, -1) |
(-5, 11, 1) |
|
|
(-1, 1, 2) |
(2, -3, -5) |
(-6, 3, -1) |
(28, -19, -7) |
|
|
(3, -1, 2) |
(-2, 3, 1) |
(4, -5, -3) |
(-3, 2, -3) |
|
|
(7, 2, 1) |
(5, 1, -2) |
(-3, 4, 5) |
(26, 11, 1) |
|
|
(-2, 5, 1) |
(3, 2, -7) |
(4, -3, 2) |
(-4, 22, -13) |
|
|
(5, 4, 1) |
(-3, 5, 2) |
(2, -1, 3) |
(7, 23, 4) |
|
|
(5, 1, 2) |
(-2, 1, -3) |
(4, -3, 5) |
(15, -15, 24) |
|
|
(-2, 1, 3) |
(3, -6, 2) |
(-5, -3, -1) |
(31, -6, 22) |
|
|
(7, 2, 1) |
(3, -5, 6) |
(-4, 3, -4) |
(-1, 18, -16) |
|
|
(5, 7, -2) |
(-3, 1, 3) |
(1, -4, 6) |
(14, 9, -1) |
|
|
(3, 1, 2) |
(-7, -2, -4) |
(-4, 0, 3) |
(16, 6, 15) |
|
|
(6, 1, -3) |
(-3, 2, 1) |
(-1, -3, 4) |
(15, 6, -17) |
3 |
Відомі вектора , , . Необхідно: а) обчислити мішаний добуток |
|
трьох векторів і перевірити їх на компланарність; б) знайти модуль векторного добутку двох векторів і перевірити їх на колініарність; в) обчислити скалярний добуток двох векторів і перевірити їх на |
|
ортогональність |
|
|
|
|
|
|
|
1 |
(-9, 4, -5) |
(1, -2, 4) |
(-5, 10, -20) |
|
|
|
2 |
(3, -1, 5) |
(2, -4, 6) |
(1, -2, 3) |
|
|
, |
3 |
(-7, 0, 2) |
(2, -6, 4) |
(1, -3, 2) |
,
|
, |
|
4 |
(5, -3, 4) |
(2, -4, -2) |
(3, 5, -7) |
,
|
, |
,
|
5 |
(9, -3, 1) |
(-3, -15, 21) |
(1, -5, 7) |
,
|
|
|
6 |
(-3, -1, -5) |
(2, -4, 8) |
(3, 7, -1) |
,
|
|
,
|
7 |
(3, 4, 1) |
(1, -2, 7) |
(3, -6, 21) |
|
, |
, |
8 |
(-1, 0, 5) |
(-3, 2, 2) |
(-2, -4, 1) |
|
,
|
, |
9 |
(-3, 8, 0) |
(2, 3, -2) |
(8, 12, -8) |
|
,
|
|
10 |
(4, -6, -2) |
(-2, 3, 1) |
(3, -5, 7) |
|
, |
|
11 |
(5, -6, -4) |
(4, 8, -7) |
(0, 3, -4) |
,
,
|
, |
,
|
12 |
(4, -1, 3) |
(2, 3, -5) |
(7, 2, 4) |
, , |
, |
, |
13 |
(-4, -6, 2) |
(2, 3, -1) |
(-1, 5, -3) |
, , |
,
|
, |
14 |
(2, -7, 5) |
(-1, 2, -6) |
(3, 2, -4) |
,
,
|
, |
, |
15 |
(4, -5, -4) |
(5, -1, 0) |
(2, 4, -3) |
, , |
, |
, |
16 |
(-4, 2, -1) |
(3, 5, -2) |
(0, 1, 5) |
, , |
, |
, |
17 |
(-4, 3, -7) |
(4, 6, -2) |
(6, 9, -3) |
, , |
, |
,
|
18 |
(-2, 4, -3) |
(5, 1, -2) |
(7, 4, -1) |
, , |
|
, |
19 |
(-3, 2, 7) |
(1, 0, -5) |
(6, 4, -1) |
, , |
, |
, |
20 |
(2, -4, -2) |
(7, 3, 0) |
(3, 5, -7) |
, , |
, |
, |
21 |
(6, -4, 6) |
(9, -6, 9) |
(1, 0, -8) |
, , |
,
|
, |
22 |
(2, -4, -2) |
(-9, 0, 2) |
(3, 5, -7) |
, , |
, |
, |
23 |
(3, -1, 2) |
(-1, 5, -4) |
(6, -2, 4) |
, , |
, |
, |
24 |
(2, -3, 1) |
(0, 1, 4) |
(5, 2, -3) |
, , |
, |
, |
25 |
(4, 2, -3) |
(2, 0, 1) |
(-12, -6, 9) |
, , |
, |
, |
26 |
(-4, 2, -3) |
(0, -3, 5) |
(6, 6, -4) |
, , |
, |
,
|
27 |
(7, -4, -5) |
(1, -11, 3) |
(5, 5, 3) |
, , |
, |
|
28 |
(-9, 0, 4) |
(2, -4, 6) |
(3, -6, 9) |
,
|
, |
, |
29 |
(3, -2, 1) |
(0, 2, -3) |
(-3, 2, -1) |
, , |
, |
, |
30 |
(-5, 2, -2) |
(7, 0, -5) |
(2, 3, -2) |
, , |
,
|
|
4 |
Дани
три сили
|
|
Обчислити: а) роботу, яку виконує рівнодійна цих сил, коли точка , |
|
рухаючись прямолінійно, перемістилась у точку ; б) величину |
|
моменту рівнодійної цих сил відносно точки |
|
|
|
|
|
|
|
|
(9, -3, 4) |
(5, 6, -2) |
(-4, -2, 7) |
(-5, 4, -2) |
(4, 6, -5) |
|
|
(5, -2, 3) |
(4, 5, -3) |
(-1, -3, 6) |
(7, 1, -5) |
(2, -3, -6) |
|
|
(3, -5, 4) |
(5, 6, -3) |
(-7, -1, 8) |
(-3, 5, 9) |
(5, 6, -3) |
|
|
(-10, 6, 5) |
(4, -9, 7) |
(5, 3, -3) |
(4, -5, 9) |
(4, 7, -5) |
|
|
(5, -3, 1) |
(4, 2, -6) |
(-5, -3, 7) |
(-5, 3, 7) |
(3, 8, -5) |
|
|
(-5, 8, 4) |
(6, -7, 3) |
(3, 1, -5) |
(2, -4, 7) |
(0, 7, 4) |
|
|
(7, -5, 2) |
(3, 4, -8) |
(-2, -4, 3) |
(-3, 2, 0) |
(6, 4, -3) |
|
|
(3, -4, 2) |
(2, 3, -5) |
(-3, -2, 4) |
(5, 3, -7) |
(4, -1, -4) |
|
|
(4, -2, -5) |
(5, 1, -3) |
(-6, 2, 5) |
(-3, 2, -6) |
(4, 5, -3) |
|
|
(7, 3, -4) |
(9, -4, 2) |
(-6, 1, 4) |
(-7, 2, 5) |
(4, -2, 11) |
|
|
(9, -4, 4) |
(-4, 6, -3) |
(3, 4, 2) |
(5, -4, 3) |
(4, -5, 9) |
|
|
(6, -4, 5) |
(-4, 7, 8) |
(5, 1, -3) |
(-5, -4, 2) |
(7, -3, 6) |
|
|
(5, 5, -6) |
(7, -6, 6) |
(-4, 3, 4) |
(-9, 4, 7) |
(8, -1, 7) |
|
|
(7, -6, 2) |
(-6, 2, -1) |
(1, 6, 4) |
(3, -6, 1) |
(6, -2, 7) |
|
|
(4, -2, 3) |
(-2, 5, 6) |
(7, 3, -1) |
(-3, -2, 5) |
(9, -5, 4) |
|
|
(7, 3, -4) |
(3, -2, 2) |
(-5, 4, 3) |
(-5, 0, 4) |
(4, -3, 5) |
|
|
(3, -2, 4) |
(-4, 4,-3) |
(3, 4, 2) |
(1, -4, 3) |
(4, 0, -2) |
|
|
(2, -1, -3) |
(3, 2, -1) |
(-4, 1, 3) |
(-1, 4, -2) |
(2, 3, -1) |
|
|
(4, 5, 1) |
(1, 3, -1) |
(-3, -6, 7) |
(2, -1, 0) |
(3, 3, -4) |
|
|
(1, -3, 4) |
(-2, 5, 0) |
(3, -2, -4) |
(1, 1, -3) |
(2, 4, -1) |
|
|
(5, 3, 1) |
(-1, 2, -3) |
(3, -4, 2) |
(-1, -3, 5) |
(4, 5, -2) |
|
|
(3, -2, 1) |
(-4, 3, -1) |
(2, 3, 4) |
(3, -1, 2) |
(-2, 3, 1) |
|
|
(-1, 3, 6) |
(-3, 4, -5) |
(1, -7, 2) |
(4, -5, -3) |
(-3, 2, -3) |
|
|
(-3, 0, 1) |
(2, 7, -3) |
(-4, 3, 5) |
(7, 2, 1) |
(5, 1, -2) |
|
|
(4, 2, 3) |
(-3, 1, -8) |
(2, -4, 5) |
(-3, 4, 5) |
(-2, 5, 1) |
|
|
(1, -3, 1) |
(-2, -4, 3) |
(0, -2, 3) |
(3, 2, -7) |
(4, -3, 2) |
|
|
(1, -1, 1) |
(-5, -3, 1) |
(2, -1, 0) |
(5, 4, 1) |
(-3, 5, 2) |
|
|
(5, 3, 2) |
(2, -5, 1) |
(-7, 4, -3) |
(2, -1, 3) |
(5, 1, 2) |
|
|
(3, -1, 2) |
(-2, 4, 1) |
(4, -5, -1) |
(-2, 1, -3) |
(4, -3, 5) |
|
|
(-1, 1, 2) |
(2, -3, -5) |
(-6, 3, -1) |
(-2, 3, -4) |
(3, -6, 2) |
