
- •Глава 1 основные уравнения электродинамики
- •Глава 2. Постановка задач электродинамики
- •Глава 3. Электростатическое поле
- •Глава 4. Стационарное электромагнитное поле
- •Глава 5. Излучение электромагнитных волн
- •Глава 6. Плоские волны
- •Глава 7. Волновые явления на границе раздела двух сред
- •Глава 8. Дифракция электромагнитных волн
- •Глава 9. Общие свойства направляемых волн
- •Глава 10. Направляющие системы
- •Глава 11. Объемные резонаторы
- •Глава 12. Общая теория цепей свч
- •Глава 13. Элементная база техники свч
- •Глава 14. Пассивные устройства свч
- •Глава 15. Элементная база волоконно-оптических линий связи (волс)
- •Глава 1
- •1.1. Общие сведения
- •1.2. Векторы электромагнитного поля и классификация сред
- •1.2.1. Векторы электрического поля
- •1.2.2. Векторы магнитного поля
- •1.2.3. Классификация сред
- •1.2.4. Графическое изображение полей
- •1.3. Уравнения максвелла
- •1.3.1. Первое уравнение Максвелла
- •1.3.2. Второе уравнение Максвелла
- •1.3.3. Третье и четвертое уравнения Максвелла
- •1.4. Уравнение непрерывности и закон
- •1.5. Система уравнений максвелла и классификация электромагнитных явлений
- •1.5.1. Физическая сущность уравнений Максвелла
- •1.5.2. Классификация электромагнитных явлений
- •1.6. Уравнения максвелла для
- •1.6.1. Метод комплексных амплитуд
- •1.6.2. Уравнения Максвелла в комплексной форме
- •1.6.3. Уточнение понятий о проводниках и диэлектриках
- •1.6.4. Понятие о времени релаксации
- •1.7. Граничные условия
- •1.7.1. Граничные условия для нормальных составляющих векторов электрического и магнитного полей
- •1.7.2. Граничные условия для касательных составляющих векторов электрического и магнитного полей
- •1.7.3. Граничные условия на поверхности идеального
- •1.7.4. Физическая сущность граничных условий
- •1.8. Энергия электромагнитного поля
- •1.8.1. Сторонние токи и заряды
- •1.8.2. Уравнение баланса мгновенных значений мощности
- •1.8.3. Активная, реактивная и комплексная мощности
- •1.8.4. Уравнение баланса комплексной мощности
- •1.8.5. Скорость распространения электромагнитной энергии
- •Глава 2
- •2.1. Классификация задач электродинамики
- •2.2. Теоремы единственности решения краевых задач электродинамики
- •2.2.1. Вводные Замечания
- •2.2.2. Единственность решения внутренних задач электродинамики
- •2.2.3. Единственность решения внешних задач электродинамики
- •2.3. Волновые уравнения
- •2.3.1. Общий случай
- •2.3.2. Монохроматическое поле
- •2.4. Электродинамические потенциалы
- •2.4.1. Общий случай
- •2.4.2. Монохроматическое поле
- •2.4.3. Плоские задачи электродинамики
- •2.5. Сторонние магнитные токи и заряды
- •2.6. Принцип двойственности
- •2.7. Постановка и некоторые подходы к решению
- •Глава 3
- •3.1 Основные уравнения электростатики
- •3.2. Граничные условия
- •3.3. Энергия электростатического поля
- •3.4. Емкость
- •3.5. Постановка и методы решения задач электростатики
- •3.5.1. Определение поля, создаваемого известными источниками в безграничной однородной среде
- •3.5.2. Примеры определения поля известных источников
- •3.5.3. Краевые задачи электростатики
- •3.6. Конденсаторы
- •3.6.1. Емкость конденсатора
- •3.6.2. Плоский конденсатор
- •3.6.3. Цилиндрический конденсатор
- •Глава 4
- •4.1. Основные уравнения стационарного электромагнитного поля
- •4.2. Магнитостатика
- •4.3. Магнитное поле и постоянный ток
- •4.4. Энергия стационарного магнитного поля
- •4.5. Индуктивность
- •4.6. Примеры расчета магнитных полей
- •4.7. Электрическое поле постоянного тока
- •Глава 5
- •5.1. Введение
- •5.2. Элементарный электрический вибратор
- •5.3. Анализ структуры электромагнитного поля элементарного электрического вибратора
- •5.3.1. Деление пространства вокруг вибратора на зоны
- •5.3.2. Дальняя (волновая) зона
- •5.3.3. Ближняя зона
- •5.3.4. Промежуточная зона
- •5.4. Диаграммы направленности элементарного V электрического вибратора
- •5.5. Мощность излучения элементарного электрического вибратора
- •5.6. Элементарный магнитный вибратор
- •5.6.1. Физические модели элементарного магнитного вибратора
- •5.6.2. Поле элементарного магнитного вибратора
- •5.6.3. Элементарный щелевой излучатель
- •5.7. Эквивалентные источники электромагнитного поля
- •5.8. Элемент гюйгенса
- •5.8.1. Принцип Гюйгенса
- •5.8.2. Поле элемента Гюйгенса
- •5.9. Лемма Лоренца. Теорема взаимности
- •Глава 6
- •6.1. Плоские волны в однородной изотропной среде
- •6.1.1. Переход от сферической волны к плоской
- •6.1.2. Свойства плоской волны в однородной изотропной среде
- •6.1.3. Волны в диэлектриках
- •6.1.4. Волны в проводниках
- •6.1.5. Затухание волн
- •6.1.6. Глубина проникновения
- •6.2. Поляризация волн
- •Глава 7
- •7.1. Поле однородной плоской волны, распространяющейся в произвольном направлении
- •7.2. Падение нормально поляризованной плоской волны на границу раздела двух сред
- •7.3. Падение параллельно поляризованной плоской волны на границу раздела двух сред
- •7.4. Полное прохождение волны во вторую среду
- •7.5. Полное отражение от границы раздела двух сред
- •7.5.1. Две диэлектрические среды
- •7.5.2. Диэлектрик и идеальный проводник
- •7.6. Падение плоской волны на границу поглощающей среды
- •7.7. Приближенные граничные условия леонтовича-щукина
- •7.8. Поверхностный эффект
- •7.8.1. Явление поверхностного эффекта
- •7.8.2. Потери энергии в проводнике
- •7.8.3. Эквивалентный поверхностный ток
- •7.8.4. Поверхностное сопротивление проводника
- •7.8.5. Сопротивление цилиндрического проводника
- •Глава 8
- •8.1. Строгая постановка задач дифракции
- •8.2. Дифракция плоской волны на круговом цилиндре
- •8.3. Численное решение задач дифракции
- •8.4. Физическая оптика (приближение гюйгенса-кирхгофа)
- •8.5. Геометрическая оптика
- •8.6. Метод краевых волн
- •8.7. Геометрическая теория дифракции
- •8.7.1. Дифракционные лучи
- •8.7.2. Вычисление поля дифракционных лучей
- •Глава 9
- •9.1. Направляющие системы и направляемые
- •9.2. Связь между поперечными и продольными составляющими векторов электромагнитного поля
- •9.3. Общие свойства и параметры электрических, магнитных и гибридных волн
- •9.4. Общие свойства поперечных электромагнитных волн
- •9.5. Концепция парциальных волн
- •9.6. Скорость распространения энергии и групповая скорость
- •9.7. Электрическая прочность линии передачи
- •9.7.1. Мощность, переносимая электромагнитной волной по линии передачи
- •9.7.2. Предельная и допустимая мощности
- •9.8. Затухание в линиях передачи
- •9.8.1. Коэффициент ослабления
- •9.8.2. Затухание, обусловленное потерями в среде,
- •9.8.3. Затухание, вызванное потерями в металлических элементах линии передачи
- •Глава 10
- •10.1. Прямоугольный волновод
- •10.1.1. Вывод формул для поля
- •10.1.2. Основная волна прямоугольного волновода
- •10.1.3. Токи на стенках прямоугольного волновода
- •10.1.4. Выбор размеров поперечного сечения прямоугольного волновода из условия одноволновой передачи
- •10.1.5. Передача энергии по прямоугольному волноводу
- •10.2. Круглый волновод
- •10.2.1. Вывод формул для поля
- •10.2.2. Токи на стенках круглого волновода
- •10.2.3. Передача энергии по круглому волноводу
- •10.3. Волноводы сложной формы
- •10.3.2. Эллиптические волноводы
- •10.4. Коаксиальная линия
- •10.4.2. Электрические и магнитные волны в коаксиальной линии
- •10.4.3. Передача энергии по коаксиальной линии
- •10.5. Двухпроводная линия
- •10.6. Полосковые линии
- •10.7. Линии поверхностной волны. Замедляющие системы
- •10.7.1. Простейшие диэлектрические волноводы
- •10.7.2. Металлическая плоскость, покрытая слоем диэлектрика
- •10.7.3. Плоский диэлектрический волновод
- •10.7.4. Металлический цилиндр, покрытый слоем диэлектрика
- •10.7.5. Круглый диэлектрический волновод
- •10.7.6. Световоды
- •10.7.7. Замедляющие структуры
- •Глава 11
- •11.1. Общие свойства объемных резонаторов
- •11.1.1. Общие сведения
- •11.1.2. Свободные гармонические колебания в объемных резонаторах
- •11.1.3. Резонансные частоты свободных колебаний
- •11.1.4. Добротность объемных резонаторов
- •11.1.5. Собственная добротность закрытых резонаторов
- •11.1.6. Связь между добротностью объемного резонатора и длительностью процесса свободных колебаний в нем
- •11.2. Резонаторы в виде отрезков регулярных линий передачи
- •11.2.1. Общие сведения
- •11.2.2. Коаксиальный резонатор
- •11.2.3. Резонатор в виде отрезка коаксиальной линии, нагруженной на емкость
- •11.2.4. Прямоугольный резонатор
- •11.2.5. Цилиндрический резонатор
- •11.2.6. Полосковые резонаторы
- •11.3. Проходной резонатор
- •11.4. Квазистационарные резонаторы
- •Глава 12
- •12.1. Понятие об эквивалентной схеме цепи свч. Круговая диаграмма полных сопротивлений
- •12.1.1. Цепь свч (тракт свч)
- •12.1.2. Линии передачи конечной длины. Неоднородности в линиях передачи
- •12.1.3. Полное эквивалентное сопротивление линии передачи
- •12.1.4. Круговая диаграмма полных сопротивлений
- •12.2. Проблема согласования и методы ее решения
- •12.2.1. Методы согласования линии передачи с нагрузкой
- •12.2.2. Узкополосное согласование с помощью реактивных элементов
- •12.2.3. Согласование с помощью четвертьволнового трансформатора
- •12.2.4. Широкополосное согласование нагрузки с линией
- •12.3. Матричное описание цепей свч
- •12.4. Метод декомпозиции и матричное описание сложных цепей свч
- •12.5. Построение эквивалентных схем простейших цепей свч. Реализация цепей из сосредоточенных элементов в диапазоне свч
- •12.6. Структурный и параметрический синтез. Автоматизация проектирования устройств свч
- •Глава 13
- •13.1. Сочленение отрезков линий передачи
- •13.2. Возбуждение электромагнитных волн в линиях передачи
- •13.3. Трансформаторы типов волн. Вращающиеся сочленения
- •13.4. Устройства, предназначенные для управления передаваемой мощностью
- •13.4.1. Аттенюаторы
- •13.4.2. Тройники
- •13.5. Фазовращатели
- •13.6. Поляризационные устройства
- •Глава 14
- •14.1. Направленные ответвители и мостовые схемы свч
- •14.1.1. Направленные ответвители на связанных линиях передачи
- •14.1.2. Мостовые схемы свч
- •14.1.3. Применение направленных ответвителей и мостов
- •14.2. Фильтры свч
- •14.2.1. Классификация фильтров
- •14.2.2. Синтез эквивалентных схем фильтров
- •14.2.3. Реализация эквивалентных схем фильтров свч
- •14.2.4. Широкополосное согласование с помощью фильтров
- •14.3. Невзаимньш'устройстшгсвч
- •14.3.1. Область применения невзаимных устройств
- •14.3.2. Свойства ферритов в диапазоне свч
- •14.3.3. Распространение электромагнитных волн в - неограниченной ферритовой среде
- •14.3.4. Ферритовые вентили
- •14.3.5. Ферритовые фазовращатели
- •14.3.6. Циркуляторы
- •Глава 15
- •15.1. Методы реализации элементов волс
- •15.2. Устройства ввода и вывода энергии оптического излучения
- •15.3. Делители и сумматоры мощности оптических сигналов. Направленные ответвители
- •15.4. Элементы и устройства оптического тракта, использующие дифракционные решетки
9.2. Связь между поперечными и продольными составляющими векторов электромагнитного поля
Рассмотрим произвольную бесконечно протяженную однородную направляющую систему, ориентированную вдоль оси Z Будем считать, что направляющая система не вносит потерь.
В области, где отсутствуют сторонние источники, комплексные амплитуды векторов Е и Н, соответствующие волне, бегущей вдоль однородной линии передачи, могут быть представлены в виде
где β = const (коэффициент фазы), а ξ и η - координаты, изменяющиеся в поперечном сечении рассматриваемой линии передачи. Выбор конкретной системы координат зависит от формы поперечного сечения линии. Множитель exp(-iβz) соответствует волне, бегущей в положительном направлении оси Z, а множитель exp (iβz)-волне, бегущей в обратном направлении. Для определенности будем считать, что волна распространяется в положительном направлении оси Z. Если потребуется рассмотреть волны, бегущие в обратном направлении, это всегда будет оговорено.
Векторы
Ёт
и Нт
должны удовлетворять однородным
уравнениям Гельмгольца (2.32) и (2.33)
соответственно. С учетом формул (9.1) эти
уравнения при
могут
быть переписаны в виде
а
оператор
Величину
γ┴
называют
поперечным
волновым числом.
Покажем, что в тех случаях, когда векторы ЁтиНт (оба или
один из них) имеют продольные составляющие, нахождение поля направляемой волны может быть сведено к определению составляющих Ётz и Hmz, так как поперечное составляющие векторов
поля выражаются через продольные. Проецируя уравнения Максвелла (1.76) на оси X и У декартовой дистемы координат и учитывая, что в рассматриваемом случае дифференцирование по переменной z эквивалентно умножению на (- iβ), получаем
Система уравнений (9.4) позволяет выразить составляющие Ётх,Ёту,Нтх и Нту через Ёmz и Нтz. После элементарных преобразований имеем .
Система уравнений (9.5) связывает поперечные и продольные составляющие векторов поля в декартовой системе координат. Для выражения этой связи в произвольной системе координат перейдем к векторной форме уравнений (9.5). Введем векторы
вытекающим из (9.2).
Таким образом, для определения поля Е-, Н- и гибридных
волн достаточно найти составляющие Emz и Hmz путем решения уравнений (9.10) с учетом краевых условий, соответствующих рассматриваемой направляющей системе, а для вычисления поперечных составляющих использовать равенства (9.5) или (9.8)
У ТЕМ-волн продольные составляющие векторов Ёт и Нт
отсутствуют {Ётг = 0 и Hmz = 0). Однако, как будет видно из дальнейшего, соотношения (9.5) или эквивалентные им равенства (9.8) и (9.9) оказываются полезными и в этом случае.
9.3. Общие свойства и параметры электрических, магнитных и гибридных волн
В случае электрических (Emz ≠0, Нтг = 0), магнитных (Hmz ≠ 0, Emz = 0) и гибридных (Еmz ≠ 0 и Hmz ≠ 0) волн постоянная γ┴ отлична от нуля. Это следует, в частности, из равенств (9.8) и (9.9). Для каждой конкретной линии передачи она может быть определена в результате решения уравнений (9.10) и учета краевых условий, соответствующих этой линии. Постоянная γ┴зависит от формы и размеров поперечного сечения линии передачи и от типа распространяющейся волны, но не зависит от частоты.
Выражая коэффициент фазы β из (9.3), получаем
Так
как
то
в зависимости от частоты подкоренное
выражение в (9.11) может быть положительным (при k> γ┴), равным нулю (при k = γ┴) или отрицательным (при k < γ┴).
В первом случае параметр β -действительное число и фазы составляющих векторов поля в фиксированный момент t= to= const линейно зависят от координаты z, что является признаком распространения волны вдоль оси Z с постоянной скоростью vф = ω/β. Как будет видно из дальнейшего, распространение волны в этом случае сопровождается переносом энергии вдоль оси Z.
В
третьем случае к<
γ┴.
Подкоренное
выражение в (9.11) оказывается отрицательным,
и
Знак
в правой части последнего равенства
выбран из физических соображений: при
этом множитель ехр
и
амплитуды составляющих векторов Ёт
и Нт
экспоненциально убывают вдоль оси
Z. Если принять β= i | β|, то амплитуды векторов поля будут возрастать с удалением от источников, что в рассматриваемой задаче физически невозможно. Фазы составляющих векторов поля в данном случае не зависят от координат: поле имеет характер стоячей волны и экспоненциально уменьшается вдоль оси Z. Переноса энергии вдоль линии передачи в этом случае не происходит. Подчеркнем, что экспоненциальное убывание поля вдоль линии передачи не связано с потерями энергии: рассматривается идеальная направляющая система, в которой потери отсутствуют.
Во втором случае параметр β = 0. Такой режим называют критическим. Частота f = fкp, определяемая из условия к = γ┴, называется критической частотой:
Соответствующая этой частоте критическая длина волны
Выражая γ┴ из (9.13) и подставляя в (9.11), получаем
Как видно, параметр β является действительной величиной, т.е. поле (9.1) представляет собой распространяющуюся волну, только при выполнении условия
Неравенство (9.15) можно переписать в виде
Таким образом, Е-, Н- и гибридные волны в идеальной линии передачи могут распространяться только на частотах, превышающих некоторую критическую частоту, определяемую формулой (9.12). Отметим, что значение fкp зависит от формы и размеров поперечного сечения линии и типа волны.
Неравенство (9.15), а также (9.16) часто называют условием распространения волны в линии передачи.
По аналогии с обычным определением назовем длиной направляемой волны Λ, распространяющейся в линии передачи, расстояние между двумя поперечными сечениями, в которых в один и тот же момент времени фазы составляющих вектора Е (или Н) отличаются на 2π. Очевидно также, что длина волны Λ равна расстоянию, на которое поверхность равной фазы перемещается за период. Так как зависимость всех составляющих векторов поля от координаты z определяется множителем ехр (- iβz), то
а фазовая скорость вычисляется по формуле
Как видно, при λ < λкр длина волны в линии и фазовая скорость Е-, Н- и гибридных волн больше соответственно длины волны λ = c/f и фазовой скорости vф=с волны, свободно распространяющейся в безграничной однородной среде без потерь с параметрами ε и μ .
Отметим, что у Е-, Н- и гибридных волн фазовая скорость зависит от частоты. Это явление называют дисперсией волн. При f = fкp (λ = λкр) фазовая скорость равна бесконечности, при увеличении частоты vф приближается к скорости света (рис. 9.2).
Общие выражения для критической длины волны (9.13), критической частоты (9.12), коэффициента фазы (9.14), длины волны в линии (9.17) и фазовой скорости (9.18) одинаковы для Е-, Н- и гибридных волн. Однако из этого не следует, что значения перечисленных параметров будут одинаковыми для этих волн. Критическая длина волны зависит от поперечного волнового числа (λкр = 2π/ γ┴). В свою очередь, значение γ┴ зависит от формы и размеров поперечного сечения линии передачи и от структуры поля распространяющейся волны. Структура поля Е-, Н- и гибридных волн различна, поэтому в общем случае соответствующие данным волнам значения γ┴ могут не совпадать. При этом для указанных волн не будут совпадать и значения параметров λкр, frp, β, \/ф и Λ.
Перейдем к вычислению характеристических сопротивлений рассматриваемых волн. По определению характеристическое сопротивление волны равно отношению поперечных к направлению распространения составляющих векторов Ёт и Нт.
В случае Е-волн поперечные составляющие векторов Ёт и Нm определяются формулами
перпендикулярны. Из полученного соотношения вытекает следующее выражение для характеристического сопротивления Е-волн:
Как
видно, в случае Н-волн векторы Ёт┴
и
Нт┴
(и соответствующие им векторы
,
как и аналогичные им векторы в случае
Е-волн, взаимно перпендикулярны.
Характеристическое сопротивление
Н-волн зависит от частоты. При λ
< λ кроно
всегда больше Zc.
При увеличении частоты от критической
до бесконечности
убывает
от бесконечности до Zc
(см. рис. 9.3).
В области волн длиннее критической (λ > λкР) характеристические сопротивления Е- и Н-волн являются чисто мнимыми величинами. Это означает, что при λ >λкр поперечные составляющие векторов напряженностей электрического и магнитного полей Ёт ┴и Нт┴ сдвинуты по фазе на 90°. Очевидно, что при этом комплексный вектор Пойнтинга принимает чисто мнимые значения, т.е. вдоль линии не происходит переноса энергии. Поле в линии при λ > λкР является чисто реактивным. Напомним, что все формулы данного раздела получены в предположении, что линия является идеальной (не вносит потерь).
В случае гибридных волн (Emz ≠ 0 и Нmz # 0) поперечные составляющие векторов Ёт и Нт определяются общими формулами (9.8) и (9.9). Поэтому получить единое простое выражение для характеристического сопротивления не удается: его величина зависит и от линии передачи, и от структуры поля распространяющейся волны и при λ < λкР может быть как больше, так и меньше Zc. На частотах, меньших критической (λ > λкР), характеристическое сопротивление гибридных волн также принимает чисто мнимые значения.