- •Глава 1 основные уравнения электродинамики
- •Глава 2. Постановка задач электродинамики
- •Глава 3. Электростатическое поле
- •Глава 4. Стационарное электромагнитное поле
- •Глава 5. Излучение электромагнитных волн
- •Глава 6. Плоские волны
- •Глава 7. Волновые явления на границе раздела двух сред
- •Глава 8. Дифракция электромагнитных волн
- •Глава 9. Общие свойства направляемых волн
- •Глава 10. Направляющие системы
- •Глава 11. Объемные резонаторы
- •Глава 12. Общая теория цепей свч
- •Глава 13. Элементная база техники свч
- •Глава 14. Пассивные устройства свч
- •Глава 15. Элементная база волоконно-оптических линий связи (волс)
- •Глава 1
- •1.1. Общие сведения
- •1.2. Векторы электромагнитного поля и классификация сред
- •1.2.1. Векторы электрического поля
- •1.2.2. Векторы магнитного поля
- •1.2.3. Классификация сред
- •1.2.4. Графическое изображение полей
- •1.3. Уравнения максвелла
- •1.3.1. Первое уравнение Максвелла
- •1.3.2. Второе уравнение Максвелла
- •1.3.3. Третье и четвертое уравнения Максвелла
- •1.4. Уравнение непрерывности и закон
- •1.5. Система уравнений максвелла и классификация электромагнитных явлений
- •1.5.1. Физическая сущность уравнений Максвелла
- •1.5.2. Классификация электромагнитных явлений
- •1.6. Уравнения максвелла для
- •1.6.1. Метод комплексных амплитуд
- •1.6.2. Уравнения Максвелла в комплексной форме
- •1.6.3. Уточнение понятий о проводниках и диэлектриках
- •1.6.4. Понятие о времени релаксации
- •1.7. Граничные условия
- •1.7.1. Граничные условия для нормальных составляющих векторов электрического и магнитного полей
- •1.7.2. Граничные условия для касательных составляющих векторов электрического и магнитного полей
- •1.7.3. Граничные условия на поверхности идеального
- •1.7.4. Физическая сущность граничных условий
- •1.8. Энергия электромагнитного поля
- •1.8.1. Сторонние токи и заряды
- •1.8.2. Уравнение баланса мгновенных значений мощности
- •1.8.3. Активная, реактивная и комплексная мощности
- •1.8.4. Уравнение баланса комплексной мощности
- •1.8.5. Скорость распространения электромагнитной энергии
- •Глава 2
- •2.1. Классификация задач электродинамики
- •2.2. Теоремы единственности решения краевых задач электродинамики
- •2.2.1. Вводные Замечания
- •2.2.2. Единственность решения внутренних задач электродинамики
- •2.2.3. Единственность решения внешних задач электродинамики
- •2.3. Волновые уравнения
- •2.3.1. Общий случай
- •2.3.2. Монохроматическое поле
- •2.4. Электродинамические потенциалы
- •2.4.1. Общий случай
- •2.4.2. Монохроматическое поле
- •2.4.3. Плоские задачи электродинамики
- •2.5. Сторонние магнитные токи и заряды
- •2.6. Принцип двойственности
- •2.7. Постановка и некоторые подходы к решению
- •Глава 3
- •3.1 Основные уравнения электростатики
- •3.2. Граничные условия
- •3.3. Энергия электростатического поля
- •3.4. Емкость
- •3.5. Постановка и методы решения задач электростатики
- •3.5.1. Определение поля, создаваемого известными источниками в безграничной однородной среде
- •3.5.2. Примеры определения поля известных источников
- •3.5.3. Краевые задачи электростатики
- •3.6. Конденсаторы
- •3.6.1. Емкость конденсатора
- •3.6.2. Плоский конденсатор
- •3.6.3. Цилиндрический конденсатор
- •Глава 4
- •4.1. Основные уравнения стационарного электромагнитного поля
- •4.2. Магнитостатика
- •4.3. Магнитное поле и постоянный ток
- •4.4. Энергия стационарного магнитного поля
- •4.5. Индуктивность
- •4.6. Примеры расчета магнитных полей
- •4.7. Электрическое поле постоянного тока
- •Глава 5
- •5.1. Введение
- •5.2. Элементарный электрический вибратор
- •5.3. Анализ структуры электромагнитного поля элементарного электрического вибратора
- •5.3.1. Деление пространства вокруг вибратора на зоны
- •5.3.2. Дальняя (волновая) зона
- •5.3.3. Ближняя зона
- •5.3.4. Промежуточная зона
- •5.4. Диаграммы направленности элементарного V электрического вибратора
- •5.5. Мощность излучения элементарного электрического вибратора
- •5.6. Элементарный магнитный вибратор
- •5.6.1. Физические модели элементарного магнитного вибратора
- •5.6.2. Поле элементарного магнитного вибратора
- •5.6.3. Элементарный щелевой излучатель
- •5.7. Эквивалентные источники электромагнитного поля
- •5.8. Элемент гюйгенса
- •5.8.1. Принцип Гюйгенса
- •5.8.2. Поле элемента Гюйгенса
- •5.9. Лемма Лоренца. Теорема взаимности
- •Глава 6
- •6.1. Плоские волны в однородной изотропной среде
- •6.1.1. Переход от сферической волны к плоской
- •6.1.2. Свойства плоской волны в однородной изотропной среде
- •6.1.3. Волны в диэлектриках
- •6.1.4. Волны в проводниках
- •6.1.5. Затухание волн
- •6.1.6. Глубина проникновения
- •6.2. Поляризация волн
- •Глава 7
- •7.1. Поле однородной плоской волны, распространяющейся в произвольном направлении
- •7.2. Падение нормально поляризованной плоской волны на границу раздела двух сред
- •7.3. Падение параллельно поляризованной плоской волны на границу раздела двух сред
- •7.4. Полное прохождение волны во вторую среду
- •7.5. Полное отражение от границы раздела двух сред
- •7.5.1. Две диэлектрические среды
- •7.5.2. Диэлектрик и идеальный проводник
- •7.6. Падение плоской волны на границу поглощающей среды
- •7.7. Приближенные граничные условия леонтовича-щукина
- •7.8. Поверхностный эффект
- •7.8.1. Явление поверхностного эффекта
- •7.8.2. Потери энергии в проводнике
- •7.8.3. Эквивалентный поверхностный ток
- •7.8.4. Поверхностное сопротивление проводника
- •7.8.5. Сопротивление цилиндрического проводника
- •Глава 8
- •8.1. Строгая постановка задач дифракции
- •8.2. Дифракция плоской волны на круговом цилиндре
- •8.3. Численное решение задач дифракции
- •8.4. Физическая оптика (приближение гюйгенса-кирхгофа)
- •8.5. Геометрическая оптика
- •8.6. Метод краевых волн
- •8.7. Геометрическая теория дифракции
- •8.7.1. Дифракционные лучи
- •8.7.2. Вычисление поля дифракционных лучей
- •Глава 9
- •9.1. Направляющие системы и направляемые
- •9.2. Связь между поперечными и продольными составляющими векторов электромагнитного поля
- •9.3. Общие свойства и параметры электрических, магнитных и гибридных волн
- •9.4. Общие свойства поперечных электромагнитных волн
- •9.5. Концепция парциальных волн
- •9.6. Скорость распространения энергии и групповая скорость
- •9.7. Электрическая прочность линии передачи
- •9.7.1. Мощность, переносимая электромагнитной волной по линии передачи
- •9.7.2. Предельная и допустимая мощности
- •9.8. Затухание в линиях передачи
- •9.8.1. Коэффициент ослабления
- •9.8.2. Затухание, обусловленное потерями в среде,
- •9.8.3. Затухание, вызванное потерями в металлических элементах линии передачи
- •Глава 10
- •10.1. Прямоугольный волновод
- •10.1.1. Вывод формул для поля
- •10.1.2. Основная волна прямоугольного волновода
- •10.1.3. Токи на стенках прямоугольного волновода
- •10.1.4. Выбор размеров поперечного сечения прямоугольного волновода из условия одноволновой передачи
- •10.1.5. Передача энергии по прямоугольному волноводу
- •10.2. Круглый волновод
- •10.2.1. Вывод формул для поля
- •10.2.2. Токи на стенках круглого волновода
- •10.2.3. Передача энергии по круглому волноводу
- •10.3. Волноводы сложной формы
- •10.3.2. Эллиптические волноводы
- •10.4. Коаксиальная линия
- •10.4.2. Электрические и магнитные волны в коаксиальной линии
- •10.4.3. Передача энергии по коаксиальной линии
- •10.5. Двухпроводная линия
- •10.6. Полосковые линии
- •10.7. Линии поверхностной волны. Замедляющие системы
- •10.7.1. Простейшие диэлектрические волноводы
- •10.7.2. Металлическая плоскость, покрытая слоем диэлектрика
- •10.7.3. Плоский диэлектрический волновод
- •10.7.4. Металлический цилиндр, покрытый слоем диэлектрика
- •10.7.5. Круглый диэлектрический волновод
- •10.7.6. Световоды
- •10.7.7. Замедляющие структуры
- •Глава 11
- •11.1. Общие свойства объемных резонаторов
- •11.1.1. Общие сведения
- •11.1.2. Свободные гармонические колебания в объемных резонаторах
- •11.1.3. Резонансные частоты свободных колебаний
- •11.1.4. Добротность объемных резонаторов
- •11.1.5. Собственная добротность закрытых резонаторов
- •11.1.6. Связь между добротностью объемного резонатора и длительностью процесса свободных колебаний в нем
- •11.2. Резонаторы в виде отрезков регулярных линий передачи
- •11.2.1. Общие сведения
- •11.2.2. Коаксиальный резонатор
- •11.2.3. Резонатор в виде отрезка коаксиальной линии, нагруженной на емкость
- •11.2.4. Прямоугольный резонатор
- •11.2.5. Цилиндрический резонатор
- •11.2.6. Полосковые резонаторы
- •11.3. Проходной резонатор
- •11.4. Квазистационарные резонаторы
- •Глава 12
- •12.1. Понятие об эквивалентной схеме цепи свч. Круговая диаграмма полных сопротивлений
- •12.1.1. Цепь свч (тракт свч)
- •12.1.2. Линии передачи конечной длины. Неоднородности в линиях передачи
- •12.1.3. Полное эквивалентное сопротивление линии передачи
- •12.1.4. Круговая диаграмма полных сопротивлений
- •12.2. Проблема согласования и методы ее решения
- •12.2.1. Методы согласования линии передачи с нагрузкой
- •12.2.2. Узкополосное согласование с помощью реактивных элементов
- •12.2.3. Согласование с помощью четвертьволнового трансформатора
- •12.2.4. Широкополосное согласование нагрузки с линией
- •12.3. Матричное описание цепей свч
- •12.4. Метод декомпозиции и матричное описание сложных цепей свч
- •12.5. Построение эквивалентных схем простейших цепей свч. Реализация цепей из сосредоточенных элементов в диапазоне свч
- •12.6. Структурный и параметрический синтез. Автоматизация проектирования устройств свч
- •Глава 13
- •13.1. Сочленение отрезков линий передачи
- •13.2. Возбуждение электромагнитных волн в линиях передачи
- •13.3. Трансформаторы типов волн. Вращающиеся сочленения
- •13.4. Устройства, предназначенные для управления передаваемой мощностью
- •13.4.1. Аттенюаторы
- •13.4.2. Тройники
- •13.5. Фазовращатели
- •13.6. Поляризационные устройства
- •Глава 14
- •14.1. Направленные ответвители и мостовые схемы свч
- •14.1.1. Направленные ответвители на связанных линиях передачи
- •14.1.2. Мостовые схемы свч
- •14.1.3. Применение направленных ответвителей и мостов
- •14.2. Фильтры свч
- •14.2.1. Классификация фильтров
- •14.2.2. Синтез эквивалентных схем фильтров
- •14.2.3. Реализация эквивалентных схем фильтров свч
- •14.2.4. Широкополосное согласование с помощью фильтров
- •14.3. Невзаимньш'устройстшгсвч
- •14.3.1. Область применения невзаимных устройств
- •14.3.2. Свойства ферритов в диапазоне свч
- •14.3.3. Распространение электромагнитных волн в - неограниченной ферритовой среде
- •14.3.4. Ферритовые вентили
- •14.3.5. Ферритовые фазовращатели
- •14.3.6. Циркуляторы
- •Глава 15
- •15.1. Методы реализации элементов волс
- •15.2. Устройства ввода и вывода энергии оптического излучения
- •15.3. Делители и сумматоры мощности оптических сигналов. Направленные ответвители
- •15.4. Элементы и устройства оптического тракта, использующие дифракционные решетки
1.8. Энергия электромагнитного поля
1.8.1. Сторонние токи и заряды
При рассмотрении уравнений Максвелла (1.52) под вектором j подразумевалась плотность тока проводимости, возникающего в проводящей среде под воздействием электромагнитного поля. Этот вектор удовлетворяет закону Ома в дифференциальной форме (1.9).Для упрощения реальной электродинамической задачи обычно вместо имеющейся на самом деле системы рассматривают некоторую модель. При этом часть системы вообще исключается из рассмотрения. Для учета влияния этой части системы во многих случаях ее заменяют введением некоторых токов, которые рассматриваются как первопричина возникновения электромагнитного поля и считаются заданными. Эти токи принято называть сторонними. Например, в гл.5 будет рассмотрено излучение электромагнитных волн элементарным электрическим вибратором. Ток в вибраторе обусловлен подведением к нему энергии от генератора. При анализе этот ток будет считаться известным, что позволит исключить из рассмотрения процессы, протекающие в генераторе, прохождение энергии по линии, соединяющей генератор с вибратором, и т.д., т.е. существенно упростит задачу. Если этого не делать и каждую проблему рассматривать во всей ее полноте, то любая конкретная задача становится трудноразрешимой.
Для учета сторонних токов следует первое уравнение Максвелла представить в виде
где jст - плотность сторонних токов в рассматриваемой точке пространства, a j - как и прежде, плотность тока проводимости, вызванного электромагнитным полем: j = σЕ.
Аналогично сторонним токам вводится понятие сторонних зарядов. Они учитываются в третьем уравнении Максвелла:
где ρст - объемная плотность сторонних зарядов.
Второе и четвертое уравнения Максвелла остаются без изменений. В случае переменных полей функции jст ρст связаны уравнением непрерывности
При анализе многих вопросов вместо сторонних токов задаются сторонней напряженностью электрического поля Ест. В большинстве случаев при исследовании электродинамических явлений, под Ест подразумевается напряженность электрического поля, создаваемого зарядами и токами, расположенными за пределами рассматриваемой области. При изучении постоянного электрического поля под Ест иногда понимают напряженность поля сторонних электродвижущих сил неэлектрического происхождения (химических, диффузионных и др.). Введение Ест является таким же упрощением задачи, как и введение jст .Фактически оно исключает детальный анализ процессов, происходящих в какой-либо части пространства.
Выпишем также уравнения Максвелла для монохроматического поля в однородной среде, учитывающие сторонние источники:
Уравнение непрерывности для сторонних токов (1.113) в этом случае имеет вид
Третье уравнение Максвелла в комплексной форме
является следствием уравнений (1.114) и (1.116), а четвертое
(div H = 0)- следствием уравнения (1.115).
Систему уравнений Максвелла в комплексной форме (1.114)-(1.115) можно переписать также для комплексных амплитуд:
1.8.2. Уравнение баланса мгновенных значений мощности
Как уже отмечалось в 1.1, электромагнитное поле является одной из форм материи. Как и любая другая форма материи, оно обладает энергией. Эта энергия может распространяться в пространстве и преобразовываться в другие формы энергии.
Сформулируем уравнение баланса для мгновенных значений мощности применительно к некоторому объему V, ограниченному поверхностью S (рис.1.23). Пусть в объеме V, заполненном однородной изотропной средой, находятся сторонние источники. Из общих физических представлений очевидно, что мощность, выделяемая сторонними источниками, может расходоваться на джоулевы потери и на изменение энергии электромагнитного поля внутри V, а также может частично рассеиваться, уходя в окружающее пространство через поверхность S. При этом должно выполняться равенство
где Рст-мощность сторонних источников; РП-мощность джоулевых потерь внутри объема V; РΣ -мощность, проходящая через поверхность S; W-энергия электромагнитного поля, сосредоточенного в объеме V, a dW/dt- мощность, расходуемая на изменение энергии в объеме V.
В данном разделе будут использованы уравнения состояния (1.53). Эти уравнения не позволяют учесть потери энергии при поляризации и намагничивании среды. Поэтому слагаемое Рп в равенстве (1.120) фактически определяет мощность джоулевых потерь в объеме V, обусловленных током проводимости.
Уравнение (1.120) дает только качественное представление об энергетических соотношениях. Чтобы получить количественные соотношения, нужно воспользоваться уравнениями Максвелла. Рассмотрим первое уравнение Максвелла с учетом сторонних токов (1.111). Все члены этого уравнения - векторные величины, имеющие размерность А/м2.
Чтобы получить уравнение, аналогичное (1.120), нужно видоизменить первое уравнение Максвелла (1.111) так, чтобы его члены стали скалярными величинами, измеряющимися в ваттах. Для этого достаточно все члены указанного равенства скалярно умножить на вектор Е, а затем проинтегрировать полученное выражение по объему V. После скалярного умножения на вектор Е получаем
Используя известную из векторного анализа формулу div[E,H]= = Н rot Е - Е rot H, преобразуем левую часть соотношения (1.121) и заменим rot E его значением из второго уравнения Максвелла (1.39):
Подставляя это выражение в (1.121), получаем
В последнем слагаемом в правой части (1.122) изменен порядок сомножителей в скалярном произведении векторов dB/dt и Н. Это допустимо, так как Н dB/dt = дВ/дt· H. Данное изменение не является принципиальным и не дает никаких преимуществ при выводе рассматриваемого здесь уравнения баланса для мгновенных значений мощности. Однако при такой записи во всех членах уравнения (1.122) второй сомножитель (векторы jст, j, BDIdt и Н) является вектором, входившим ранее в первое уравнение Максвелла. Это обстоятельство позволит в дальнейшем (см. 1.8.4) несколько упростить вывод уравнения баланса в случае монохроматического поля (уравнения баланса комплексной мощности). Интегрируя почленно уравнение (1.122) по объему V, получаем
где направление элемента dS совпадает с направлением внешней нормали к поверхности S. При переходе от.(1.122) к (1.123) использована теорема Остроградского-Гаусса для перевода объемного интеграла от div[E, H] в поверхностный интеграл от векторного произведения [Е, Н]. Введем обозначение
и преобразуем подынтегральное выражение в последнем слагаемом в правой части (1.123):
Подставляя (1.124) и (1.125) в (1.123) и меняя порядок интегрирования и дифференцирования, получаем
Выясним физический смысл выражений, входящих в уравнение (1.126).
Рассмотрим первое слагаемое в правой части (1.126). Представим объем V в виде суммы бесконечно малых цилиндров длиной dl, торцы которых (dS) перпендикулярны направлению тока (вектору j). Тогда EjdV = EjdV=(Edl)(jdS) = dUdl = dPn, где dl =jdS - ток, протекающий по рассматриваемому бесконечно малому цилиндру; dU = Edl - изменение потенциала на длине dl, a dPn -мощность джоулевых потерь в объеме dV. Следовательно, рассматриваемое слагаемое представляет собой мощность джоулевых потерь Рп в объеме V. Используя соотношение j = σЕ, для Рп можно получить и другие представления:
Формулы (1.127) можно рассматривать как обобщенный закон Джоуля-Ленца, справедливый для проводящего объема V произвольной формы.
Интеграл в левой части (1.126) отличается от первого слагаемого в правой части только тем, что в подынтегральное выражение вместо j входит jcт. Поэтому он должен определять мощность сторонних источников. Будем считать положительной мощность, отдаваемую сторонними токами электромагнитному полю. Электрический ток представляет собой упорядоченное движение заряженных частиц. Положительным направлением тока считается направление движения положительных зарядов. Ток отдает энергию электромагнитному полю при торможении образующих его заряженных частиц. Для этого необходимо, чтобы вектор напряженности электрического поля Е имел составляющую, ориентированную противоположно направлению тока, т.е. чтобы скалярное произведение векторов Е и jст было отрицательным (E jст <0). При этом левая часть равенства (1.126) будет положительной величиной. Таким образом, мгновенное значение мощности, отдаваемой сторонними токами электромагнитному полю в объеме V, определяется выражением
Для уяснения физического смысла последнего слагаемого в правой части уравнения (1.126) рассмотрим частный случай. Предположим, что объем V окружен идеально проводящей оболочкой, совпадающей с поверхностью S. Тогда касательная составляющая вектора Е на поверхности S будет равна нулю. Элемент поверхности dS совпадает по направлению с внешней нормалью n0. Следовательно, поверхностный интеграл в уравнении (1.126) будет равен нулю, так как нормальная компонента векторного произведения [Е, Н] определяется касательными составляющими входящих в него Векторов. Кроме того, предположим, что среда в пределах объема V не обладает проводимостью ( σ = 0). При этом в рассматриваемой области не будет джоулевых потерь, и первый интеграл в правой части уравнения (1.126) также будет равен нулю. В результате получим
Очевидно, что в рассматриваемом случае мощность сторонних источников может расходоваться только на изменение энергии электромагнитного поля. Таким образом, правая часть равенства (1.129) представляет собой скорость изменения энергии электромагнитного поля, запасенной в объеме V, т.е. соответствует слагаемому dW/dt в уравнении (1.126). Естественно предположить, что интеграл в правой части (1.129) равен энергии электромагнитного поля, сосредоточенного в объеме V:
Строго говоря, этот интеграл может отличаться от W на некоторую функцию g = g(х, у, z), не зависящую от времени. Нетрудно убедиться, что функция д равна нулю. Перепишем (1.130) в виде W=WЭ+WМ, где
Предположим, что электрическое и магнитное поля являются постоянными (не зависят от времени). В этом случае, как известно из курса физики (см. также гл.З и 4), выражения (1.131) и (1.132) определяют энергию соответственно электрического и магнитного полей в объеме V. Но это означает, что g = 0 и указанные выражения определяют мгновенные значения энергии электрического и магнитного полей в объеме V при любой зависимости от временила их сумма, определяемая формулой (1.130), действительно равна мгновенному значению энергии электромагнитного поля в объеме V.
Осталось выяснить физическую сущность поверхностного интеграла в уравнении (1.126). Предположим, что в объеме V отсутствуют потери и, кроме того, величина электромагнитной энергии остается постоянной (W= const). При этом уравнение (1.126) принимает вид
В то же время из физических представлений очевидно, что в данном частном случае вся мощность сторонних источников должна уходить в окружающее пространство (Рст = РΣ). Следовательно, правая часть уравнения (1.133) равна потоку энергии через поверхность S (пределу отношения количества энергии, проходящей через S за время Δt при Δt→0), т.е.
Естественно предположить, что вектор П представляет собой плотность потока энергии (предел отношения потока энергии через площадку ΔS, расположенную перпендикулярно направлению распространения энергии, к ΔS при ΔS →0). Формально математически это предположение не очевидно, так как замена вектора П на П1 = П + rot а, где а - произвольный вектор, не изменяет величину РΣ. Однако оно является верным и в частности, непосредственно вытекает из релятивистской теории электромагнитного поля [11].
Таким образом, равенство (1.126) аналогично (1.120) и представляет собой уравнение баланса мгновенных значений мощности электромагнитного поля. Оно было получено Пойнтингом в 1884 г. и называется теоремой Пойнтинга. Соответственно вектор П называют вектором Пойнтинга. Часто используют также названия "теорема Умова-Пойнтинга" и "вектор Умова-Пойн-тинга" с целью подчеркнуть тот факт, что формулировка закона сохранения энергии в общей форме с введением понятия потока энергии и вектора, характеризующего его плотность, впервые была дана Н.А. Умовым в 1874 г.
Отметим, что энергия может поступать в объем V не только от сторонних источников. Например, поток энергии через поверхность S может быть направлен из окружающего пространства в объем V. При этом мощность PΣ будет отрицательной, так как положительным считается поток энергии, выходящий из объема V в окружающее пространство (направление элемента dS совпадает с направлением внешней нормали к поверхности S).
Сторонние источники могут не только отдавать энергию, но и получать ее от электромагнитного поля. При этом мощность сторонних источников будет отрицательной. Действительно, электромагнитное поле отдает энергию току проводимости, если оно ускоряет движение заряженных частиц, образующих ток. Для этого вектор напряженности электрического поля Е должен иметь составляющую, ориентированную вдоль линий тока, т.е. чтобы скалярное произведение векторов Е и jст было больше нуля.
Рассмотрим более подробно формулы, определяющие энергию электромагнитного поля. Подынтегральные выражения в
можно
интерпретировать как мгновенные значения
объемных плотностей энергии электрического
и магнитного полей соответственно, а
их сумму
- как объемную плотность полной энергии электромагнитного поля.
Подчеркнем, что принцип суперпозиции, которому удовлетворяют векторы напряженностей электрического и магнитного полей, не распространяется на энергию. Действительно, пусть энергии полей E1, H1 и Е2, Н2, существующих по отдельности в области V, равны соответственно W1 и W2. Тогда энергия суммарного поля Е = Е1 + Е2, Н = Н1 + Н2 определится выражением
- взаимная энергия полей. Взаимная энергия W12 может быть как положительной, так и отрицательной. Если векторы Е1 и Е2, а также H1 и Н2 взаимно перпендикулярны, то W12 = 0.
В случае переменных процессов распределение электромагнитной энергии непрерывно изменяется. Это изменение в каждой данной точке можно определить на основе уравнения (1.122), которое удобно представить в виде
где pст =-E jст и pn = Ej-мгновенные значения плотностей мощности сторонних источников и мощности джоулевых потерь соответственно. При переходе от соотношения (1.122) к уравнению (1.136) учтены формулы (1.125) и (1.135). Уравнение (1.136) является дифференциальной формой теоремы Пойнтинга.
