
- •Содержание
- •Глава 1. Каналы передачи информации 7
- •Глава 2. Основы теории сигналов 24
- •Глава 3. Спектры сигналов 42
- •Глава 4. Принципы построения модемов 50
- •Глава 5. Кодирование информации 70
- •Глава 6. Принципы построения
- •Введение
- •Глава 1 каналы передачи информации
- •1. Основные понятия
- •1.1 Определение системы передачи информации
- •1.2. Классификация каналов связи
- •1.3. Описание непрерывного канала
- •1.4. Помехи в каналах связи
- •1.5. Описание дискретного канала
- •2. Описание дискретных каналов
- •2.1. Состояния дискретного канала
- •2.2. Пакеты ошибок
- •2.3. Критерии описания реальных дискретных каналов
- •3. Основные модели источников ошибок
- •3.1. Описание источника ошибок на основе цепей Маркова
- •3.2. Описание источника ошибок на основе процессов восстановления
- •3.3. Описание источника ошибок на основе процессов накопления
- •3.4. Сопоставление основных моделей
- •4. Частные модели источников ошибок
- •4.1. Модель Гилберта
- •4.2. Модель Эллиота-Гилберта
- •4.3. Модель Элиота
- •4.4. Модель Беннета-Фройлиха
- •4.5. Модель Попова - Турина
- •Глава 2 основы теории сигналов
- •1. Математическое представление сигналов
- •1.1 Сообщения, сигналы и помехи как случайные процессы
- •1.2. Система базисных функций
- •2. Дискретизация и квантование сигналов
- •2.1. Общие положения
- •2.2. Регулярность отсчетов
- •2.3. Критерий оценки точности
- •2.4. Способы воспроизведения сигнала
- •2.5. Квантование сигнала
- •Глава 3 спектры сигналов
- •1. Частотная область представления сигналов
- •1.1. Разложение периодической функции в ряд Фурье
- •1.2. Представление произвольной периодической функции рядом Фурье
- •1. 3. Комплексный спектр сигнала
- •1.4. Представление произвольной функции на бесконечном интервале
- •2. Спектр плотности энергии
- •3. Спектр плотности мощности
- •Глава 4 принципы построения модемов
- •1. Виды модуляции
- •2. Спектры модулированных сигналов
- •2.1. Спектры сигналов, модулированных по амплитуде
- •2.2. Спектры сигналов, модулированных по частоте
- •2.3. Спектры сигналов, модулированных по фазе
- •2.4. Одновременная модуляция по амплитуде и частоте
- •2.5. Спектры манипулированных сигналов
- •3. Принцип действия дискретных каналов
- •3.1. Принципы построения многоканальных систем
- •3.2. Принцип действия канала с амплитудной манипуляцией
- •3.3. Принцип действия канала с частотной манипуляцией
- •3.4. Принцип действия канала с относительной фазовой модуляцией
- •Глава 5 кодирование информации
- •1. Первичные коды
- •1.1. Простой, безызбыточный код
- •1.2. Коды по законам комбинаторики
- •2. Помехоустойчивые коды
- •2.1. Основные понятия
- •2.2. Оценка корректирующих свойств кода
- •2.3. Коды для обнаружения одиночных ошибок
- •3. Групповые коды
- •3.1. Определение групповых кодов
- •3.2. Проверочная матрица
- •3.3. Условия обнаружения и исправления ошибок
- •4. Циклические коды
- •4.1. Сведения из алгебры полиномов
- •4.2. Построение циклических кодов
- •4.3.Методы обнаружения и исправления ошибок
- •5. Кодирующие устройства
- •5.1. Линейные переключательные схемы
- •5.2. Методы кодирования циклических кодов
- •6. Декодирование циклических кодов
- •6.1. Устройство декодирования для режима обнаружения ошибок
- •6.2. Устройство декодирования для режима исправления ошибок
- •Глава 6 принципы построения систем передачи информации
- •1. Синхронизация и фазирование
- •1.1. Общие понятия
- •1.2. Метод приема сигналов с неопределенной фазой
- •1.3. Классификация устройств синхронизации
- •1.4. Требования к устройствам фазирования по циклам
- •2. Методы повышения верности
- •2.1. Требования к системам передачи дискретной информации
- •2.2. Системы без обратной связи
- •2.3. Системы с обратной связью
- •3.Системы передачи информации с решающей обратной связью
- •3.1. Система с рос и ожиданием
- •3.2. Система с рос и непрерывной передачей информации
- •4.Системы передачи информации с информационной обратной связью
- •Библиографический список
- •Обработка и передача сигналов в системах дистанционного управления
6.2. Устройство декодирования для режима исправления ошибок
Всякому исправляемому вектору ошибок соответствует свой синдром, т.е.
ei(x),ej(x)E ei(x)ej(x) Si(x)=Rem[ei(х)/g(x)]Sj(x)=Rem[ej(х)/g(x)].
Из этого следует, что между элементами множества ошибок Е и элементами множества синдромов S (в разд. 4 синдром имел обозначение D) установлено взаимно однозначное соответствие.
Существуют два метода определения полинома ошибок по синдрому - параллельный и последовательный методы.
6.2.1. Параллельный метод определения ошибок. Схема кодера, работающего согласно параллельному методу, приведена на рис.5.12.
Рис.5.12
Рассмотрим пример. Для циклического кода заданы: n=5, m=2, d=3, g(x)=x3+x2+1, r=s=1, Е=5. Множество полиномов ошибок Е={х4, х3, х2, х1, х0}. Множество полиномов синдромом ошибок S={х2+х+1, х2+1, х2, х, 1}.
Вычислитель синдрома представляет собой такую же схему, как и вычислитель синдрома на рис.5.11. Схема селектора синдромов (см. рис.5.12) представляет собой комбинаторную схему, синтезированную согласно таблице соответствия элементов множества синдромов S множеству ошибок Е. Соответствие для данного примера приведено в табл.5.9.
Исходя из данных табл.5.9, синтезирована схема селектора синдромов, вид которой приведен на рис.5.13. Следует отметить, что сложность селектора синдрома определяется длиной кода и числом исправляемых ошибок Е.
Таблица 5.9
S |
Е |
||||||
S2 |
S1 |
S0 |
e4 |
e3 |
e2 |
е1 |
е0 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
|
0 |
1 |
Рис.5.13
6.2.2. Последовательный метод определения ошибок. Данный метод направлен на сокращение числа синдромов и упрощение реализации. Логика метода изложена в разд.4.3.
На рис.5.14 приведена схема декодера, в которой процедура декодирования осуществляется за 2n тактов. Первые n тактов осуществляется определение синдрома ошибки принятой кодовой комбинации, а последние n тактов определяется разряд кодовой комбинации, содержащий ошибку.
Рис.5.14
Схема селекции настроена на синдром ошибки старшего разряда. В течение первых n тактов ключ К1 находится в положении 2, ключ К2 замкнут. Происходит определение синдрома ошибки принятой кодовой комбинации.
В течение последующих n тактов ключ К1 переводится в положение 1, а ключ К2 разомкнут. Начат этап исправления ошибки. В первые n тактов заполняется блок регистров и в вычислителе синдрома определяется синдром ошибки старшего разряда. В течение последующих n тактов осуществляется циклический сдвиг и выполняется поиск ошибки так, как это описано в разд. 4.3. На (2n+1)-ом такте подается сигнал разрешения на выдачу исправленной кодовой комбинации. Реализацию и работу схемы селекции рассмотрим на примере последующего декодера (см. рис.5.15).
Недостатком данной схемы является задержка при декодировании на n тактов.
Избавиться от данного недостатка позволяет применение декодера, схема которого приведена на рис.5.15.
Рис.5.15
Работает декодер при непрерывной передаче следующим образом.
Информация записывается одновременно в первый буферный регистр БР1 и в первый вычислитель синдрома ВС1. В ВС1 происходит определение синдрома ошибки в принятой комбинации циклического кода. Между n-ым и (2n+1)-ым тактами содержимое ВС1 переносится во второй вычислитель синдрома ВС2. Содержимое ВС1 сбрасывается в ноль. В последующие n+1 тактов в ВС2 происходит циклический сдвиг найденного в ВС1 синдрома. Схема селекции представляет собой селектор нулевого синдрома (см. рис.5.10 и рис.5.11). Исправленная кодовая комбинация записывается во второй буферный регистр БР2.
Так как этап исправления ошибок в *(х) совпадает с этапом вычисления синдрома последующей кодовой комбинации, то импульсы считывания информации на элементы И поступают через каждые n тактов. На рис.5.16 приведены временные диаграммы, показывающие последовательность приема кодовых комбинаций, вычисления синдрома ошибок и выдачи информации получателю.
Рис.5.16
Пример. Для циклического кода заданы: n=6, m=3, d=3, g(x)=x3+x2+1, r=s=1. Схема декодера при непрерывной передаче приведена на рис.5.17. Селектор синдрома настроен на корректор ошибки старшего разряда S6(х)=х+1 (011).
Пусть *(х)=(х)e(x)=(х5+х4+х2)х4=х5+ х2. Работа декодера отображена в виде временных диаграмм, приведенных в табл.5.10.
Рис.5.17
Таблица 5.10
№ |
Код |
ВС1 |
ВС2 |
СС |
||||
|
|
D01 |
D11 |
D21 |
D02 |
D12 |
D22 |
|
1 |
1 |
1 |
0 |
0 |
|
|
|
|
2 |
0 |
0 |
1 |
0 |
|
|
|
|
3 |
0 |
0 |
0 |
1 |
|
|
|
|
4 |
1 |
0 |
0 |
1 |
|
|
|
|
5 |
0 |
1 |
0 |
1 |
|
|
|
|
6 |
0 |
1 |
1 |
1 |
|
|
|
|
|
|
0 |
0 |
0 |
1 |
1 |
1 |
|
7 |
|
|
|
|
1 |
1 |
0 |
0 |
8 |
|
|
|
|
0 |
1 |
1 |
1 |
9 |
|
|
|
|
1 |
0 |
0 |
0 |
10 |
|
|
|
|
0 |
1 |
0 |
0 |
11 |
|
|
|
|
0 |
0 |
1 |
0 |
12 |
|
|
|
|
|
|
|
0 |
Окончание табл. 5.10
№ |
Регистр |
М2 |
|||
|
D01 |
D11 |
… |
D51 |
|
1 |
1 |
0 |
|
0 |
|
2 |
0 |
1 |
|
0 |
|
3 |
0 |
0 |
|
0 |
|
4 |
1 |
0 |
|
0 |
|
5 |
0 |
1 |
|
0 |
|
6 |
0 |
0 |
|
1 |
|
|
|
|
|
|
|
7 |
|
|
|
0 |
1 |
8 |
|
|
|
0 |
1 |
9 |
|
|
|
1 |
0 |
10 |
|
|
|
0 |
1 |
11 |
|
|
|
0 |
0 |
12 |
|
|
|
|
0 |