
- •Содержание
- •Глава 1. Каналы передачи информации 7
- •Глава 2. Основы теории сигналов 24
- •Глава 3. Спектры сигналов 42
- •Глава 4. Принципы построения модемов 50
- •Глава 5. Кодирование информации 70
- •Глава 6. Принципы построения
- •Введение
- •Глава 1 каналы передачи информации
- •1. Основные понятия
- •1.1 Определение системы передачи информации
- •1.2. Классификация каналов связи
- •1.3. Описание непрерывного канала
- •1.4. Помехи в каналах связи
- •1.5. Описание дискретного канала
- •2. Описание дискретных каналов
- •2.1. Состояния дискретного канала
- •2.2. Пакеты ошибок
- •2.3. Критерии описания реальных дискретных каналов
- •3. Основные модели источников ошибок
- •3.1. Описание источника ошибок на основе цепей Маркова
- •3.2. Описание источника ошибок на основе процессов восстановления
- •3.3. Описание источника ошибок на основе процессов накопления
- •3.4. Сопоставление основных моделей
- •4. Частные модели источников ошибок
- •4.1. Модель Гилберта
- •4.2. Модель Эллиота-Гилберта
- •4.3. Модель Элиота
- •4.4. Модель Беннета-Фройлиха
- •4.5. Модель Попова - Турина
- •Глава 2 основы теории сигналов
- •1. Математическое представление сигналов
- •1.1 Сообщения, сигналы и помехи как случайные процессы
- •1.2. Система базисных функций
- •2. Дискретизация и квантование сигналов
- •2.1. Общие положения
- •2.2. Регулярность отсчетов
- •2.3. Критерий оценки точности
- •2.4. Способы воспроизведения сигнала
- •2.5. Квантование сигнала
- •Глава 3 спектры сигналов
- •1. Частотная область представления сигналов
- •1.1. Разложение периодической функции в ряд Фурье
- •1.2. Представление произвольной периодической функции рядом Фурье
- •1. 3. Комплексный спектр сигнала
- •1.4. Представление произвольной функции на бесконечном интервале
- •2. Спектр плотности энергии
- •3. Спектр плотности мощности
- •Глава 4 принципы построения модемов
- •1. Виды модуляции
- •2. Спектры модулированных сигналов
- •2.1. Спектры сигналов, модулированных по амплитуде
- •2.2. Спектры сигналов, модулированных по частоте
- •2.3. Спектры сигналов, модулированных по фазе
- •2.4. Одновременная модуляция по амплитуде и частоте
- •2.5. Спектры манипулированных сигналов
- •3. Принцип действия дискретных каналов
- •3.1. Принципы построения многоканальных систем
- •3.2. Принцип действия канала с амплитудной манипуляцией
- •3.3. Принцип действия канала с частотной манипуляцией
- •3.4. Принцип действия канала с относительной фазовой модуляцией
- •Глава 5 кодирование информации
- •1. Первичные коды
- •1.1. Простой, безызбыточный код
- •1.2. Коды по законам комбинаторики
- •2. Помехоустойчивые коды
- •2.1. Основные понятия
- •2.2. Оценка корректирующих свойств кода
- •2.3. Коды для обнаружения одиночных ошибок
- •3. Групповые коды
- •3.1. Определение групповых кодов
- •3.2. Проверочная матрица
- •3.3. Условия обнаружения и исправления ошибок
- •4. Циклические коды
- •4.1. Сведения из алгебры полиномов
- •4.2. Построение циклических кодов
- •4.3.Методы обнаружения и исправления ошибок
- •5. Кодирующие устройства
- •5.1. Линейные переключательные схемы
- •5.2. Методы кодирования циклических кодов
- •6. Декодирование циклических кодов
- •6.1. Устройство декодирования для режима обнаружения ошибок
- •6.2. Устройство декодирования для режима исправления ошибок
- •Глава 6 принципы построения систем передачи информации
- •1. Синхронизация и фазирование
- •1.1. Общие понятия
- •1.2. Метод приема сигналов с неопределенной фазой
- •1.3. Классификация устройств синхронизации
- •1.4. Требования к устройствам фазирования по циклам
- •2. Методы повышения верности
- •2.1. Требования к системам передачи дискретной информации
- •2.2. Системы без обратной связи
- •2.3. Системы с обратной связью
- •3.Системы передачи информации с решающей обратной связью
- •3.1. Система с рос и ожиданием
- •3.2. Система с рос и непрерывной передачей информации
- •4.Системы передачи информации с информационной обратной связью
- •Библиографический список
- •Обработка и передача сигналов в системах дистанционного управления
5. Кодирующие устройства
5.1. Линейные переключательные схемы
5.1.1. Устройство умножения. Устройства умножения реализуют на полусумматорах (М2) и D-триггерах, которые можно рассматривать как элементы задержки на один такт времени [11].
Пусть задан некоторый фиксированный полином g(x)=gkxk+gl-1xl-1+…+g1x+g0, а также существует произвольный полином p(x)=pl-1xl-1+pl-2xl-2+…+p1x+p0. Схема устройства умножения p(x)g(x) представлена на рис.5.1.
Рис.5.1
При реализации конкретной схемы для умножения на фиксированный полином выполняется правило. Если коэффициент gi=1, то между элементами Di-1 и Di находится полусумматор М2, а если gi=0, то выход элемента Di-1 непосредственно связан со входом элемента Di.
При работе устройства умножения коэффициенты полинома p(x) поступают, начиная со старшего разряда по тактам синхронизации. В исходном состоянии все элементы памяти (D-триггера) находятся в нулевом состоянии.
Пример. Пусть p(x)=x2+x+1, а g(x)=x+1. Устройство умножения на g(x) приведено на рис.5.2. В табл.5.3 приведены временные диаграммы, поясняющие работу устройства умножения.
Рис.5.2
Таблица 5.3
Такты |
Вход |
D0 |
М2 |
Выход |
Степень |
1 |
1 |
1 |
1 |
1 |
х3 |
2 |
1 |
1 |
0 |
0 |
х2 |
3 |
1 |
1 |
0 |
0 |
х1 |
4 |
0 |
0 |
1 |
1 |
х0 |
Если умножать p(x)g(x) в алгебраической форме, то получим p(x)g(x)=(x2+x+1)(x+1)=х3+1. Этот же результат получен и в устройстве умножения и показан на временных диаграммах (см. табл.5.1).
5.1.2. Устройство деления. Пусть задан фиксированный полином g(x) и произвольный полином p(x). Старшая степень полинома g(x) есть deg[g(x)]=k, а старшая степень полинома p(x) - deg[p(x)]=l-1. Полином p(x) -делимое, а полином g(x) - делитель. Устройство деления p(x)/g(x) представлено на рис.5.3.
Рис.5.3
Структура схемы предусматривает, что если gi=1, то между элементами Di-1 и Di находится полусумматор М2, а если gi=0, то выход элемента Di-1 непосредственно связан со входом элемента Di.
При работе устройства в течение первых k тактов происходит заполнение элементов памяти, т.к. l-1>k. Следовательно, до k–го такта обратная связь не работает, и в схеме осуществляется обычный сдвиг. Начиная с (k+1)-го такта, на выходе устройства начинают появляться элементы частного от деления, и вступает в работу обратная связь. После l тактов на выходе устройства будет сформирован последний элемент частного, а в элементах Di будет записан остаток от деления.
Пример. Пусть p(x)=x2+x+1, а g(x)=x+1. Устройство умножения на g(x) приведено на рис.5.2. В табл.5.1 приведены временные диаграммы, поясняющие работу устройства умножения.
Пример. Пусть p(x)=x4+x3+х+1, а g(x)=х2+x+1. Устройство деления на g(x) приведено на рис.5.4. В табл.5.4 приведены временные диаграммы, поясняющие работу устройства умножения.
Рис.5.4
Таблица 5.4
Вход |
М2 |
D0 |
М2 |
D0 |
Выход |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
При делении p(x) на g(x) остаток равен нулю, а частное от деления равно х2+1.
5.1.3. Устройство одновременного умножения и деления. Пусть v(x) - фиксированный полином, deg[v(x)]=k, g(x) - фиксированный полином, deg[g(x)]=k, p(x) - произвольный полином, deg[p(x)]=l-1. Устройство осуществляет операцию p(x)v(x)/g(x). Схема устройства представлена на рис.5.5.
Рис.5.5
Если на вход подать полином p(x), то через l тактов на выходе получим последний коэффициент частного от деления p(x)v(x)/g(x), а в элементах Di будет зафиксирован остаток от деления.