
- •Содержание
- •Глава 1. Каналы передачи информации 7
- •Глава 2. Основы теории сигналов 24
- •Глава 3. Спектры сигналов 42
- •Глава 4. Принципы построения модемов 50
- •Глава 5. Кодирование информации 70
- •Глава 6. Принципы построения
- •Введение
- •Глава 1 каналы передачи информации
- •1. Основные понятия
- •1.1 Определение системы передачи информации
- •1.2. Классификация каналов связи
- •1.3. Описание непрерывного канала
- •1.4. Помехи в каналах связи
- •1.5. Описание дискретного канала
- •2. Описание дискретных каналов
- •2.1. Состояния дискретного канала
- •2.2. Пакеты ошибок
- •2.3. Критерии описания реальных дискретных каналов
- •3. Основные модели источников ошибок
- •3.1. Описание источника ошибок на основе цепей Маркова
- •3.2. Описание источника ошибок на основе процессов восстановления
- •3.3. Описание источника ошибок на основе процессов накопления
- •3.4. Сопоставление основных моделей
- •4. Частные модели источников ошибок
- •4.1. Модель Гилберта
- •4.2. Модель Эллиота-Гилберта
- •4.3. Модель Элиота
- •4.4. Модель Беннета-Фройлиха
- •4.5. Модель Попова - Турина
- •Глава 2 основы теории сигналов
- •1. Математическое представление сигналов
- •1.1 Сообщения, сигналы и помехи как случайные процессы
- •1.2. Система базисных функций
- •2. Дискретизация и квантование сигналов
- •2.1. Общие положения
- •2.2. Регулярность отсчетов
- •2.3. Критерий оценки точности
- •2.4. Способы воспроизведения сигнала
- •2.5. Квантование сигнала
- •Глава 3 спектры сигналов
- •1. Частотная область представления сигналов
- •1.1. Разложение периодической функции в ряд Фурье
- •1.2. Представление произвольной периодической функции рядом Фурье
- •1. 3. Комплексный спектр сигнала
- •1.4. Представление произвольной функции на бесконечном интервале
- •2. Спектр плотности энергии
- •3. Спектр плотности мощности
- •Глава 4 принципы построения модемов
- •1. Виды модуляции
- •2. Спектры модулированных сигналов
- •2.1. Спектры сигналов, модулированных по амплитуде
- •2.2. Спектры сигналов, модулированных по частоте
- •2.3. Спектры сигналов, модулированных по фазе
- •2.4. Одновременная модуляция по амплитуде и частоте
- •2.5. Спектры манипулированных сигналов
- •3. Принцип действия дискретных каналов
- •3.1. Принципы построения многоканальных систем
- •3.2. Принцип действия канала с амплитудной манипуляцией
- •3.3. Принцип действия канала с частотной манипуляцией
- •3.4. Принцип действия канала с относительной фазовой модуляцией
- •Глава 5 кодирование информации
- •1. Первичные коды
- •1.1. Простой, безызбыточный код
- •1.2. Коды по законам комбинаторики
- •2. Помехоустойчивые коды
- •2.1. Основные понятия
- •2.2. Оценка корректирующих свойств кода
- •2.3. Коды для обнаружения одиночных ошибок
- •3. Групповые коды
- •3.1. Определение групповых кодов
- •3.2. Проверочная матрица
- •3.3. Условия обнаружения и исправления ошибок
- •4. Циклические коды
- •4.1. Сведения из алгебры полиномов
- •4.2. Построение циклических кодов
- •4.3.Методы обнаружения и исправления ошибок
- •5. Кодирующие устройства
- •5.1. Линейные переключательные схемы
- •5.2. Методы кодирования циклических кодов
- •6. Декодирование циклических кодов
- •6.1. Устройство декодирования для режима обнаружения ошибок
- •6.2. Устройство декодирования для режима исправления ошибок
- •Глава 6 принципы построения систем передачи информации
- •1. Синхронизация и фазирование
- •1.1. Общие понятия
- •1.2. Метод приема сигналов с неопределенной фазой
- •1.3. Классификация устройств синхронизации
- •1.4. Требования к устройствам фазирования по циклам
- •2. Методы повышения верности
- •2.1. Требования к системам передачи дискретной информации
- •2.2. Системы без обратной связи
- •2.3. Системы с обратной связью
- •3.Системы передачи информации с решающей обратной связью
- •3.1. Система с рос и ожиданием
- •3.2. Система с рос и непрерывной передачей информации
- •4.Системы передачи информации с информационной обратной связью
- •Библиографический список
- •Обработка и передача сигналов в системах дистанционного управления
3.2. Принцип действия канала с амплитудной манипуляцией
Структурная схема дискретного канала одного направления передачи информации с АМ приведена на рис.4.21.
На рис.3.4 приняты следующие обозначения: ИИ – источник информации; М – модулятор; Д – демодулятор; Г – генератор; Фпер – фильтр передатчика; Фпр – фильтр приемника; У – усилитель; АРУ – блок автоматического регулирования усиления; Фнч – фильтр низкой частоты; ВУ – выходное устройство; ПИ – получатель информации.
Сигналы дискретной информации от ИИ в виде импульсов постоянного тока поступают на модулятор М. В зависимости от полярности импульсов М или пропускает через себя ток генератора, или нет. Фильтр Фпер обеспечивает ограничение спектра сигнала, передаваемого в линии связи.
Рис.4.21
Из линии связи модулированный сигнал попадает в Фпр, назначение которого состоит в уменьшении помех, приходящих из линии связи. При многоканальной передаче с частотным разделением эти фильтры служат для выделения нужного сигнала из группового сигнала. Усилитель У служит для усиления и поддержания совместно с блоком АРУ постоянного уровня сигнала на входе демодулятора Д. В демодуляторе, который представляет собой обычный выпрямитель, АМ-сигнал превращается в импульсы постоянного тока. Фильтр Фнч подавляет в выпрямленном сигнале высшие гармоники и остатки несущей частоты. Выходное устройство ВУ обеспечивает форму и амплитуду сигнала на выходе СПИ. Достоинство данной СПИ состоит в простоте реализации. Недостатки - низкая помехоустойчивость, чувствительность к кратковременным колебаниям уровня сигнала, т.к. эти колебания не могут быть скомпенсированы блоком АРУ из-за его инерционности.
3.3. Принцип действия канала с частотной манипуляцией
Структурная схема дискретного канала с ЧМ приведена на рис.4.22.
На рис.4.22 дополнительно к ранее введенным обозначениям (см. рис.4.21) приняты следующие обозначения: ОА – ограничитель амплитуды, ЧД – частотный детектор, АД – амплитудный детектор, СС – схема сравнения.
На рис.4.23 приведена функциональная схема частотного модулятора.
В состав передатчика входит генератор несущей частоты, параметры которого определяются резонансным контуром из индуктивности L и емкости C. Частотная модуляция несущей осуществляется изменением одной из реактивных составляющих контура в соответствии с законом изменения модулированного напряжения. Управление частотной модуляцией происходит следующим образом.
Рис.4.22
Рис.4.23
При отсутствии сигнала от источника информации частота генератора определяется величинами индуктивности L1 и емкости C1. При поступлении на вход модулятора напряжения одной полярности последовательно с индуктивностью L1 включается индуктивность L2. Общая индуктивность контура возрастает, частота генератора уменьшается. При поступлении от источника информации на вход модулятора напряжения другой полярности последовательно с емкостью C1 включается емкость C2 и частота генератора возрастает. Такой способ модуляции называется «без разрыва фазы».
На рис.4.24 приведены временные диаграммы, поясняющие особенности работы СПИ с частотной модуляцией.
Рис. 4.24
Генератор несущей частоты и М преобразуют сигналы ИИ в ЧМ-напряжение (см. рис. 4.24,б). Нестационарные процессы в Фпер приводят к искажению формы сигналов (см. рис. 4.24,в). Усилитель усиливает приходящий сигнал для обеспечения правильной работы ограничителя амплитуды ОА (см. рис. 4.24,г). Ограничитель амплитуды позволяет:
- устранить влияние изменений амплитуды сигнала в канале связи на длительность принимаемого сигнала;
- уменьшить искажение элементарного сигнала в результате нестационарных процессов (см. рис. 4.24,д);
- уменьшить действие импульсных помех.
Частотный демодулятор ЧД называется частотным дискриминатором и преобразует ЧМ-сигнал в совокупность двух АМ-сигналов (см. рис. 4.24,е и рис. 4.24,ж). На рис.4.25 и рис.4.26 приведены варианты схем приемной части СПИ.
Преобразование ЧМ-сигнала в совокупность двух АМ-сигналов осуществляется либо с помощью двух последовательно соединенных резонансных контуров (см. рис.4.25), либо двух параллельно включенных фильтров (см. рис.2.26).
При резонансе токов в одном из контуров (см. рис.4.25), вследствие большего сопротивления по частоте резонанса, в нем будет и большее падение напряжения.
Рис.4.25
Рис.4.26
Если от ОА поступил сигнал с fВ, то увеличивается падение напряжения на первой обмотке трансформатора. Если от ОА поступил сигнал с fН, то увеличивается падение напряжения на второй обмотке трансформатора. Напряжения с первой и второй обмоток трансформатора выпрямляются (см. рис. 4.24,з и рис.4.24,и) и подаются на схему сравнения СС, в которой обычно используется электронное дифференциальное реле ЭДР, в зависимости от того, какое напряжение, на каком из входов больше ЭДР выдает сигнал соответствующей полярности (см. рис.4.24,к). Преимущества частотной модуляции определяются тем, что не надо оптимизировать порог для каждого отношения мощности сигнал/помеха. Производится сравнение огибающих частот fВ и fН с нулевым порогом, не зависимым от отношения сигнал/помеха. За счет этого обеспечивается выигрыш в достоверности передачи. Недостаток состоит в чувствительности к изменениям частоты в канале.