
- •Розповсюдження та тиражування без офіційного дозволу заборонено
- •Модуль 1: «Множини. Відповідності. Відношення.». Змістовний модуль1.1. «Множини та операції над ними». План.
- •Література
- •1. Поняття множини та її елементу, їхні позначення. Загальноприйняті позначення основних числових множин. Способи задання множин.
- •2. Порожня, скінченна, нескінченна та універсальна множини. Підмножина. Власні та невласні підмножини даної множини. Рівні та нерівні множини.
- •Малюнок 1. Зображення універсальної множини.
- •4. Операція об’єднання (додавання) множин та основні властивості (закони) цієї операції.
- •Малюнок 6: об’єднання множин ав.
- •Малюнок 7: доведення переставного закону .
- •5. Операція перетину множин та основні властивості (закони) цієї операції.
- •Малюнок 8: перетин множин .
- •6. Операції різниці (віднімання) множин та основні властивості (закони) цієї операції.
- •7. Операція доповнення до даної та універсальної множини та основні властивості (закони) цих операцій.
- •Малюнок 18: доведення закону де Моргана ()'''.
- •8. Поняття розбиття множини на класи (підмножини), що попарно не перетинаються. Розбиття множини на класи за допомогою однієї, двох і трьох властивостей. Класифікації.
- •9. Поняття кортежу та впорядкованої пари. Поняття кортежу довжини n. Рівні пари та кортежі.
- •Малюнок 19. Задання декартового добутку множин за допомогою графа.
- •Модуль 1: «Множини. Відповідності Відношення.». Змістовний модуль1.2. «Відповідності та відношення.». План.
- •Література
- •Малюнок 20. Граф відповідності.
- •4. Відношення еквівалентності та порядку, їх властивості. Впорядковані множини. Зв'язок відношення еквівалентності з розбиттям множини на класи, що попарно не перетинаються.
- •Розв’язання:
- •Розв’язання:
- •Малюнок № 21. Розв’язання задачі 2.
- •Розв’язання:
- •2. Розміщення з повтореннями та без повторень.
- •Доведення:
- •Розв’язання.
- •Доведення.
- •Розв’язання.
- •3. Перестановки з повтореннями та без повторення.
- •Розв’язання.
- •Доведення.
- •Розв’язання.
- •4. Комбiнацiї та їх властивості.
- •Доведення.
- •Розв’язання.
- •Доведення.
- •Доведення.
- •Запитання для самоконтролю та завдання для самостійної роботи студентів за модулем 1.
- •Модуль 2: «Висловлення. Предикати. Теореми.». Змістовний модуль 2.1. «Поняття.».
- •Література.
- •1. Поняття як форма мислення, зміст і обсяг поняття та зв'язок між ними.
- •Діаграма № 1. Відношення часткового збігу між поняттями.
- •Діаграма № 2: відношення підпорядкування між поняттями.
- •Означуване поняття
- •Видова відмінність
- •3. Аксіоми. Теореми. Ознаки.
- •Модуль 2: «Висловлення. Предикати. Теореми.». Змістовний модуль 2.2. «Висловлення та предикати.».
- •Література.
- •1. Поняття висловлення, їх види (елементарні, складені, рівносильні) та позначення.
- •2. Поняття предиката, його позначення та область визначення. Поняття кванторів існування та загальності, їх позначення та зв'язок між ними.
- •3. Операція заперечення над висловленнями та предикатами. Таблиці істинності. Основні властивості (закони) операції заперечення.
- •4. Операція кон’юнкції над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції кон’юнкції.
- •4.1. Операція кон'юнкції висловлень.
- •4.2. Операція кон'юнкції предикатів.
- •5. Операція диз’юнкції над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції диз’юнкції.
- •5.1. Операція диз’юнкції над висловленнями.
- •5.2. Диз'юнкція двох предикатів.
- •6. Операція імплікації над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції імплікації.
- •6.1. Операція імплікації висловлень.
- •6.2. Операція імплікації предикатів.
- •7. Операція еквіваленції над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції еквіваленції.
- •7.1. Операція еквіваленції висловлень.
- •7.2. Операція еквіваленції предикатів.
- •Розв’язування:
- •Розв’язання:
- •Запитання для самоконтролю та самостійної роботи студентів за змістовним модулем 2.2.
- •2. Способи доведення теорем (дедуктивний, індуктивний, метод від супротивного тощо).
- •Доведення:
- •3. Необхідні та достатні умови.
- •4. Поняття міркування, правильні та неправильні міркування. Перевірка правильності міркувань з допомогою кругів л.Ейлера.
- •Діаграма № 6: перевірка правильності міркувань за допомогою кругів Ейлера.
- •5*. Алгоритми. Основні властивості алгоритмів. Приклади алгоритмів, що використовуються в курсі математики початкової школи.
- •Запитання для самоконтролю та самостійної роботи студентів за змістовним модулем 2.3.
- •Розподіл годин по семестрах для спеціальності 8.010102- початкове навчання.
- •Розподіл годин по семестрах для спеціальності 8.010101- дошкільне виховання, початкове навчання .
- •Структура залікового кредиту курсу для спеціальності 8.010102 – початкове навчання.
- •Структура залікового кредиту курсу для спеціальності 8.010101 – дошкільне виховання, початкове навчання.
- •Теми практичних занять для спеціальності 8.010102 –початкове навчання.
- •Теми практичних занять для спеціальності 8.010101 – дошкільне виховання, початкове навчання.
- •Завдання для самостійної роботи для спеціальності 8.010102 – початкове навчання.
- •Завдання для самостійної роботи для спеціальності 8.010101 – дошкільне виховання, початкове навчання.
- •Навчальний проект для спеціальності 8.010102 – початкове навчання. (індивідуальні навчально-дослідні завдання)
- •Розподіл балів за видами занять для спеціальності 8.010101 - початкове навчання.
- •Навчальний проект для спеціальності 8.010101 – дошкільне виховання, початкове навчання (індивідуальні навчально-дослідні завдання).
- •Розподіл балів за видами занять для спеціальності 8.010102- дошкільне виховання, початкове навчання.
- •Норми оцінок поточного контролю.
- •Підсумковий контроль у першому семестрі для спеціальності 8.010102 – початкове навчання включає в себе:
- •Підсумковий контроль у першому семестрі для спеціальності 8.010101 – дошкільне виховання, початкове навчання включає в себе:
- •Пільги та штрафні санкції
- •Розподіл балів, що присвоюються студентам спеціальності 8.010102 – початкове навчання.
- •Розподіл балів, що присвоюються студентам спеціальності 8.010101 – дошкільне виховання, початкове навчання.
- •Робочі навчальні плани з математики.
- •Програма державного екзамену “математика з методикою викладання математики у початкових класах” пояснювальна записка
- •Програма державного екзамену з математики
- •Програма державного екзамену з методики викладання математики у початкових класах
- •Основна література
- •Додаткова література
- •Методичні посібники
Діаграма № 6: перевірка правильності міркувань за допомогою кругів Ейлера.
5*. Алгоритми. Основні властивості алгоритмів. Приклади алгоритмів, що використовуються в курсі математики початкової школи.
5*. Поняття алгоритму зустрічається як в математиці, так і в повсякденному житті. Точне визначення алгоритму в математиці не в усьому співпадає з інтуїтивним розумінням цього поняття в практичній діяльності людей. Термін алгоритм увійшов у активний словниковий запас людей завдяки значному застосуванню електронно–обчислювальної техніки в сучасному виробництві. Поняття алгоритму є одним із основних понять математики та інформатики. Ще задовго до використання інформатики в математиці застосовувалися різні алгоритми (або алгорифми). Зокрема, алгоритм письмового додавання, віднімання, множення, ділення, розкладу числа на прості множники, алгоритм Евкліда для знаходження НСД тощо.
Під алгоритмом розуміють точні вказівки щодо виконання у певному порядку деякої серії операцій для розв’язування задач певного типу. Наприклад: для рівняння ах=b маємо: 1. Якщо а≠0, то х=b:а. 2. Якщо а=0 і b≠0, то рівняння розв’язку немає. 3. Якщо а=b=0, то рівняння 0х=0 має безліч розв’язків, тобто х - будь-яке дійсне число.
Застосування алгоритму через скінченне число кроків приводить до розв’язання кожної задачі даного типу. Спільним для всіх алгоритмів є його характерні ознаки, до яких відносимо:
повну визначеність алгоритму, тобто алгоритм повинен привести до результату;
масовість алгоритму, тобто він повинен мати можливість застосуватись до множини випадків.
Алгоритми, за якими розв’язування поставлених задач зводиться до чотирьох арифметичних дій, називають числовими алгоритмами.
У теорії алгоритмів виділяють такі основні їх властивості:
1. Визначеність алгоритму, тобто алгоритм повинен бути записаним так, щоб не можна було неоднозначно тлумачити його вказівки.
2. Масовість алгоритму, тобто застосовність алгоритму до всіх задач одного типу.
3. Результативність алгоритму, тобто алгоритм повинен бути таким, щоб через певне число кроків, діючи за вказівками алгоритму, можна було б одержати розв’язок потрібної задачі даного типу.
4. Формальність алгоритму, тобто алгоритм повинен бути таким, щоб діючи за його вказівками, можна було б правильно виконати весь алгоритм.
Із курсу інформатики відомо, що існують такі способи описання алгоритму: а) словесний; б) табличний; в) графічний. Коли описують алгоритм, то ставлять певні вимоги, серед яких ми виділимо: точність, лаконічність, зрозумілість. Із курсу інформатики відомі декілька видів алгоритмів, серед яких ми виділимо: 1) лінійні алгоритми; 2) алгоритми з розгалуженнями; 3) циклічні алгоритми.
Означення: алгоритм називається лінійним, якщо в ньому дії виконуються послідовно одна за одною.
Означення: алгоритмом із розгалуженням називається алгоритм, в якому послідовність виконання операцій залежить від певних умов.
Означення: циклічним називається алгоритм, в якому група вказівок повторюється декілька разів.
В інформатиці сукупність засобів і правил запису алгоритмів називають алгоритмічною мовою.
Означення: програмою називають алгоритм, записаний на зрозумілій машині мові.
Означення: програмою називають послідовність команд, які повністю описують певний обчислювальний процес. Кожна команда описує певну частину обчислювального процесу.
Процес підготовки математичної задачі для її розв’язування на ЕОМ після вибору числового методу розв’язування називають програмуванням. В інформатиці виділяють такі етапи програмування: а) побудова алгоритму; б) розміщення в запам’ятовуючих пристроях машини вихідних даних, команд, допоміжних чисел, а також проміжних і кінцевих результатів; в) складання команд; г) перевірка і уточнення команд або програми.
Як в повсякденному житті, так і в математиці зустрічається дуже багато алгоритмів. Алгоритми зустрічаються вже в курсі математики початкової школи. Як правило, термін “алгоритми” для запам’ятовування молодшими школярами не вводиться. До алгоритмів, з якими зустрічаються неявно учні початкових класів в курсі математики можна віднести такі: 1) найрізноманітніші алгоритми усних та письмових обчислень; 2) алгоритми побудови геометричних фігур; 3) алгоритми розв’язування деяких типів задач; 4) алгоритми обчислення числових значень виразів із змінною при заданих значеннях букви. Досить часто вказані алгоритми даються учням у вигляді вказівок, які одержали назву алгоритмічних приписів. Наприклад, алгоритм множення двоцифрового числа на одноцифрове матиме такий вигляд: 1. Розклади перший множник на суму розрядних доданків: 23=20+3. 2. Помнож перший доданок на 4. 3. Помнож другий доданок на 4. 4. До 2 додай 3. 5. Запиши результат.
Алгоритм письмового ділення багатоцифрового числа на одноцифрове матиме такий вигляд: 1. Утвори перше неповне ділене. 2. Визнач кількість цифр у частці. 3. Поділи перше неповне ділене на дільник. 4. Запиши першу цифру частки. 5. Перевір першу цифру частки. 6. Перевір, чи правильно знайшли першу цифру частки. 7. Утвори друге неповне ділене. 8. Знайди другу цифру частки. 9. Перевір другу цифру частки. 10. Перевір, чи правильно знайдено другу цифру частки. 11. Утвори третє неповне ділене. 12. Знайди третю цифру частки. 13. Перевір третю цифру частки. 14. Закінчи обчислення.