
- •Розповсюдження та тиражування без офіційного дозволу заборонено
- •Модуль 1: «Множини. Відповідності. Відношення.». Змістовний модуль1.1. «Множини та операції над ними». План.
- •Література
- •1. Поняття множини та її елементу, їхні позначення. Загальноприйняті позначення основних числових множин. Способи задання множин.
- •2. Порожня, скінченна, нескінченна та універсальна множини. Підмножина. Власні та невласні підмножини даної множини. Рівні та нерівні множини.
- •Малюнок 1. Зображення універсальної множини.
- •4. Операція об’єднання (додавання) множин та основні властивості (закони) цієї операції.
- •Малюнок 6: об’єднання множин ав.
- •Малюнок 7: доведення переставного закону .
- •5. Операція перетину множин та основні властивості (закони) цієї операції.
- •Малюнок 8: перетин множин .
- •6. Операції різниці (віднімання) множин та основні властивості (закони) цієї операції.
- •7. Операція доповнення до даної та універсальної множини та основні властивості (закони) цих операцій.
- •Малюнок 18: доведення закону де Моргана ()'''.
- •8. Поняття розбиття множини на класи (підмножини), що попарно не перетинаються. Розбиття множини на класи за допомогою однієї, двох і трьох властивостей. Класифікації.
- •9. Поняття кортежу та впорядкованої пари. Поняття кортежу довжини n. Рівні пари та кортежі.
- •Малюнок 19. Задання декартового добутку множин за допомогою графа.
- •Модуль 1: «Множини. Відповідності Відношення.». Змістовний модуль1.2. «Відповідності та відношення.». План.
- •Література
- •Малюнок 20. Граф відповідності.
- •4. Відношення еквівалентності та порядку, їх властивості. Впорядковані множини. Зв'язок відношення еквівалентності з розбиттям множини на класи, що попарно не перетинаються.
- •Розв’язання:
- •Розв’язання:
- •Малюнок № 21. Розв’язання задачі 2.
- •Розв’язання:
- •2. Розміщення з повтореннями та без повторень.
- •Доведення:
- •Розв’язання.
- •Доведення.
- •Розв’язання.
- •3. Перестановки з повтореннями та без повторення.
- •Розв’язання.
- •Доведення.
- •Розв’язання.
- •4. Комбiнацiї та їх властивості.
- •Доведення.
- •Розв’язання.
- •Доведення.
- •Доведення.
- •Запитання для самоконтролю та завдання для самостійної роботи студентів за модулем 1.
- •Модуль 2: «Висловлення. Предикати. Теореми.». Змістовний модуль 2.1. «Поняття.».
- •Література.
- •1. Поняття як форма мислення, зміст і обсяг поняття та зв'язок між ними.
- •Діаграма № 1. Відношення часткового збігу між поняттями.
- •Діаграма № 2: відношення підпорядкування між поняттями.
- •Означуване поняття
- •Видова відмінність
- •3. Аксіоми. Теореми. Ознаки.
- •Модуль 2: «Висловлення. Предикати. Теореми.». Змістовний модуль 2.2. «Висловлення та предикати.».
- •Література.
- •1. Поняття висловлення, їх види (елементарні, складені, рівносильні) та позначення.
- •2. Поняття предиката, його позначення та область визначення. Поняття кванторів існування та загальності, їх позначення та зв'язок між ними.
- •3. Операція заперечення над висловленнями та предикатами. Таблиці істинності. Основні властивості (закони) операції заперечення.
- •4. Операція кон’юнкції над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції кон’юнкції.
- •4.1. Операція кон'юнкції висловлень.
- •4.2. Операція кон'юнкції предикатів.
- •5. Операція диз’юнкції над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції диз’юнкції.
- •5.1. Операція диз’юнкції над висловленнями.
- •5.2. Диз'юнкція двох предикатів.
- •6. Операція імплікації над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції імплікації.
- •6.1. Операція імплікації висловлень.
- •6.2. Операція імплікації предикатів.
- •7. Операція еквіваленції над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції еквіваленції.
- •7.1. Операція еквіваленції висловлень.
- •7.2. Операція еквіваленції предикатів.
- •Розв’язування:
- •Розв’язання:
- •Запитання для самоконтролю та самостійної роботи студентів за змістовним модулем 2.2.
- •2. Способи доведення теорем (дедуктивний, індуктивний, метод від супротивного тощо).
- •Доведення:
- •3. Необхідні та достатні умови.
- •4. Поняття міркування, правильні та неправильні міркування. Перевірка правильності міркувань з допомогою кругів л.Ейлера.
- •Діаграма № 6: перевірка правильності міркувань за допомогою кругів Ейлера.
- •5*. Алгоритми. Основні властивості алгоритмів. Приклади алгоритмів, що використовуються в курсі математики початкової школи.
- •Запитання для самоконтролю та самостійної роботи студентів за змістовним модулем 2.3.
- •Розподіл годин по семестрах для спеціальності 8.010102- початкове навчання.
- •Розподіл годин по семестрах для спеціальності 8.010101- дошкільне виховання, початкове навчання .
- •Структура залікового кредиту курсу для спеціальності 8.010102 – початкове навчання.
- •Структура залікового кредиту курсу для спеціальності 8.010101 – дошкільне виховання, початкове навчання.
- •Теми практичних занять для спеціальності 8.010102 –початкове навчання.
- •Теми практичних занять для спеціальності 8.010101 – дошкільне виховання, початкове навчання.
- •Завдання для самостійної роботи для спеціальності 8.010102 – початкове навчання.
- •Завдання для самостійної роботи для спеціальності 8.010101 – дошкільне виховання, початкове навчання.
- •Навчальний проект для спеціальності 8.010102 – початкове навчання. (індивідуальні навчально-дослідні завдання)
- •Розподіл балів за видами занять для спеціальності 8.010101 - початкове навчання.
- •Навчальний проект для спеціальності 8.010101 – дошкільне виховання, початкове навчання (індивідуальні навчально-дослідні завдання).
- •Розподіл балів за видами занять для спеціальності 8.010102- дошкільне виховання, початкове навчання.
- •Норми оцінок поточного контролю.
- •Підсумковий контроль у першому семестрі для спеціальності 8.010102 – початкове навчання включає в себе:
- •Підсумковий контроль у першому семестрі для спеціальності 8.010101 – дошкільне виховання, початкове навчання включає в себе:
- •Пільги та штрафні санкції
- •Розподіл балів, що присвоюються студентам спеціальності 8.010102 – початкове навчання.
- •Розподіл балів, що присвоюються студентам спеціальності 8.010101 – дошкільне виховання, початкове навчання.
- •Робочі навчальні плани з математики.
- •Програма державного екзамену “математика з методикою викладання математики у початкових класах” пояснювальна записка
- •Програма державного екзамену з математики
- •Програма державного екзамену з методики викладання математики у початкових класах
- •Основна література
- •Додаткова література
- •Методичні посібники
Доведення:
Р
озглянемо
скінченну множину Х таку, що n(Х)=n. Щоб
утворити кортеж довжини k із елементів
цієї множини Х, потрібно розглянути
декартовий добуток множини Х саму на
себе Х×Х×Х×...×Х, який містить k
k
е
лементів,
бо кожен кортеж довжини k є елементом
декартового добутку. Згідно з правилом
добутку число елементів цієї множини
Х×Х×Х×...×Х
k
д
орівнює
n(Х×Х×Х×...×Х)=n(Х)×n(Х)×n(Х)×...×n(Х)=n•n•n•...•n=nk.
Теорему
k k k
доведено.
Застосування доведеної теореми проілюструємо на прикладі наступної задачі, подібну до якої ми раніше розв’язали, використовуючи правило добутку.
Задача: скільки п’ятицифрових чисел можна утворити із цифр 1, 2, 3, 4, 5?
Розв’язання.
Оскільки в задачі нічого не говориться про те повторюються чи не повторюються цифри в записі чисел, то будемо вважати, що вони повторюються. Отже, в задачі є п’ятиелементна множина Х={1,2,3,4,5}, де n(Х)=5. Із елементів цієї множини потрібно утворювати впорядковані кортежі довжиною 5, бо нам потрібні п’ятицифрові числа, а, оскільки, цифри можуть повторюватися, то мова йде про розміщення з повтореннями. Отже, будемо використовувати формулу для обчислення числа розміщень з повтореннями, тобто Ãnk=nk. У нашому випадку n(Х)=5, k=5, а тому Ã55=55=3125. Таким чином, число розміщень з повтореннями із 5 елементів по 5 елементів дорівнює 3125.
У комбінаториці крім розміщень з повтореннями розглядаються розміщення без повторень. Для того, щоб навчитися їх обчислювати введемо означення та доведемо відповідну теорему.
Означення: розміщенням із даних n елементів скінченної множини Х по k елементів називаються впорядковані кортежі довжини k, утворені із елементів множини Х, компоненти яких не повторюються.
Число розміщень без повторень символічно позначається Аnk i читається: число розміщень із даних n елементів по k елементів або А із n по k.
Теорема: Число розміщень з n елементів по k дорівнює добутку k послідовних натуральних чисел із яких найбільшим є n.
Символічно сформульована теорема запишеться так: Аnk=n(n-1)(n-2)...(n-k+1)=n!/(n-k)!
Доведення.
Розглянемо скінченну множину Х таку, що n(Х)=n. Будемо утворювати із елементів цієї множини кортежі довжиною k, де k≤n. Оскільки в множині Х є n елементів, то перший компонент кортежу можна вибрати n способами, другий – n-1 способом, третій - n-2 способами, і нарешті k-й – n-(k-1)=n-k+1 – способом. Згідно правила добутку число Аnk таких кортежів довжини k буде дорівнювати n(n-1)(n-2)...(n-k+1). Отже, Аnk=n(n-1)(n-2)...(n-k+1). Теорему доведено.
У математиці добуток всіх послідовних чисел від 1 до деякого числа k прийнято позначати спеціальним символом k! та називати k-факторіал. Наприклад: 3!=1•2•3=6; 5!=1•2•3•4•5=120; 7!=1•2•3•4•5•6•7=5040; k!=1•2•3•...•k. У математиці прийнято вважати, що 0!=1 i 1!=1. Використовуючи ці позначення, спробуємо перетворити формулу для знаходження числа розміщень. У формулі Аnk є добуток всіх натуральних чисел від n до n-k+1, але немає добутку від 1 до n-k. Щоб одержати цей добуток i не змінити значення формули, домножимо й поділимо вираз у правій частині формули на добуток послідовних натуральних чисел від 1 до n-k. Аnk=(n•(n-1)•(n-2)•...•(n-k+1)(n-k)•(n-k-1)•…3•2•1)/((n-k)•(n-k-1)•…3•2•1)= n!/(n-k)!. Це зроблено тому, що в чисельнику є добуток всіх послідовних чисел від 1 до n. Отже, чисельник можна записати як n!. У знаменнику є добуток всіх послідовних натуральних чисел від 1 до n-k, то запишемо його з використанням факторіалу, тобто (n-k)!.
Покажемо застосування виведених формул для обчислення числа розміщень на прикладі наступної задачі.
Задача: скільки двозначних чисел можна записати за допомогою цифр 2, 4, 5, 6, 7 так, щоб цифри не повторювалися?