- •Оглавление
- •1. Абиотические факторы. Классификация организмов по их отношению к абиотическим факторам.
- •2. Автотрофные и гетеротрофные организмы. Трофическая пирамида.
- •3. Активные окраины континентов: типы, cтроение, зональность вулканизма.
- •4. Андезиты и геодинамические условия их проявления.
- •5. Аномалии силы тяжести Фая и Буге, причины различия корреляции их значений с рельефом.
- •1. Для приведения измеренного значения gн к уровню океана вводят поправку за высоту без учёта масс рельефа. Δg1. Эту поправку называют поправкой Фая.
- •2. Аномалии Буге вычисляются следующим образом:
- •6. Бониниты и геодинамические условия их проявления.
- •7. Важнейшие группы ископаемых животных и растений, их значение для стратиграфии и палеогеографических реконструкций.
- •8. Влияние климатических изменений в океанах и на континентах (примеры).
- •9. Гамма-гамма методы: ядерной геофизики: принципы, задачи.
- •10. Геодинамические условия проявления ультраосновных пород.
- •11. Геодинамические условия формирования диоритов.
- •12. Геологические задачи электроразведки, измерительные схемы.
- •13. Геологические задачи электроразведки, измерительные схемы.
- •14. Геологические условия образования грейзеновых и скарновых месторождений вольфрама, главные рудные минералы.
- •15. Геосферы Земли: принципы выделения, состав, мощности и взаимодействие.
- •16. Геотектонические и фациально-палеогеографические обстановки формирования нефтепроизводящих свит.
- •17. Гидротермальное минералообразование.
- •18. Главные петрохимические типы метаморфических пород.
- •19. Главные породообразующие минералы магматических горных пород.
- •20. Главные различия континентальных и морских обстановок осадконакопления и фаций (примеры).
- •21. Главные сульфидные минералы и их диагностика.
- •22. Главные типы гранитоидов и геодинамические условия их проявления.
- •23. Главные эпохи складчатости, с чем связаны. Формирование и типы орогенных поясов.
- •24. Горячие точки, плюмы и связанный с ними магматизм.
- •25. Гсз: задачи, основы методики, принципы дискретной корреляции волн.
- •26. Иерархия таксономических подразделений. Бинарная номенклатура.
- •27. Интерпретация кривых вэз: качественная интерпретация, модели среды. Проблема некорректности обратной задачи вэз и способ ее преодоления.
- •28. Интрузивные горные породы нормального ряда.
- •29. Источники излучений и детекторы в ядерной геофизике, схемы измерений.
- •30. Как влияют характеристики кристаллической структуры на физические свойства горных пород.
- •31. Какое значение имеет атомная структура элементов для физических свойств минералов и горных пород.
- •32. Классификация методов электроразведки по типам полей и моделям среды.
- •33. Климатическая зональность и климатические изменения. Отличия органического мира холодных и теплых стран.
- •34. Коллекторы, флюидоупоры, ловушки. Типы пор и коллекторов.
- •35. Континетальный и океанский рифтогенез: особенности строения и магматизма.
- •1.Осевая зона, большей частью представленная рифтовой долиной (грабеном)
- •2.Гребневая зона, по обе стороны рифтовой долины (осевого горста)
- •3.Зона флангов или склонов хребта, постепенно понижающаяся в направлении
- •4.Абиссальные равнины
- •36. Корреляция между плотностью и скоростями сейсмических волн. Объясните природу общей закономерности и отклонений от нее.
- •37. Кристаллизационно-гравитационная дифференциация. Расслоенные плутоны габброидов.
- •38. Критерии различия магматических пород разных фаций глубинности.
- •39. Литосфера и астеносфера. Явление изостазии.
- •40. Магматические месторождения и связанные с ними полезные ископаемые.
- •41. Магматические сульфидные медно-никелевые месторождения. Примеры на территории России.
- •42. Магнитное поле Земли: структура на поверхности, вариации.
- •43. Магнитные свойства горных пород: определяющие факторы и закономерности.
- •48. Методы интерпретации магнитных аномалий.
- •49. Методы разведочной геофизики и определяющие свойства горных пород.
- •50. Методы решения задач стратиграфии. Основные биологические и небиологические методы.
- •51. Методы сопротивлений; принципы, измерительные установки, различие методов вэз и эп.
- •52. Механизмы складкообразования и геологические обстановки формирования складок и складчатых систем.
- •53. Минералогия метапелитовых метаморфических пород.
- •54. Минералогия скарнов.
- •55. Мов: геологические задачи, основы методики, построение и геологическая интерпретация временных разрезов.
- •56. Мпв: геологические задачи, основы методики, определение скоростей и построение границ.
- •57. Нейтронные методы ядерной геофизики: принципы, задачи.
- •58. Некорректность обратных задач гравиразведки и магниторазведки и пути ее преодоления.
- •59. Нормальное гравитационное поле Земли, его изменение с широтой и высотой вблизи земной поверхности.
- •60. Обстановки формирования сдвиговых зон и мегапарагенезы структурных форм.
- •61. Общие черты гравиразведки и магниторазведки.
- •62. Океанографический профиль: геоморфологические элементы, биономические зоны.
- •63. Осадочно-миграционная теория происхождения нефти и газа и формирования их залежей.
- •64. Основные вулканические породы нормального ряда и геодинамические условия их проявления.
- •65. Основные геологические задачи разведочной геофизики и роль разных методов в их решении.
- •66. Основные структурные элементы Сибирской платформы и Западно-Сибирской плиты.
- •67. Основные типы углеводородных соединений в нефтях и природных газах.
- •68. Особенности состава главных породообразующих минералов магматических пород.
- •69. Палеогеографическая карта и ее особенности. Методические основы палеогеографических реконструкций. Ареал, космополиты, эндемики.
- •70. Палеомагнитные исследования и их значение для тектоники.
- •71. Палинология и микропалеонтология: объекты изучения, значение в стратиграфии и палеогеографии.
- •72. Пассивные окраины континентов: строение и состав осадочных формаций.
- •73. Первичные формы залегания магматических горных пород. Геологические методы диагностики морфологии и взаимоотношений тел.
- •74. Петрогенетические механизмы, приводящие к разнообразию состава магматических пород.
- •75. Петрохимические серии вулканических пород.
- •76. Плотность горных пород: определяющие факторы и закономерности.
- •77. Положения тектоники литосферных плит и их фактическая основа.
- •78. Понятия о залежах и месторождениях нефти и газа. Взаимоотношения нефти, газа и воды в залежах. Классификация залежей.
- •79. Пористость, проницаемость и фазовая проницаемость коллекторов. Нефть, газ и вода в коллекторах.
- •80. Породы и минералы верхней мантии.
- •81. Пояса метаморфических пород высоких давлений и их происхождение.
- •82. Преимущества и недостатки биостратиграфии в решении стратиграфических задач.
- •83. Признаки возрастных взаимоотношений минеральных ассоциаций.
- •2. Зарождение на поверхности жидкости.
- •3. Зарождение на готовых зародышах.
- •4. Зарождение на кристаллах ранней генерации.
- •84. Принципы и методы изотопной геохронологии.
- •85. Принципы систематики минералов.
- •86. Разрезы океанической коры и слагающие ее горные породы.
- •87. Расплавные и флюидные включения в минералах и их значение.
- •88. Региональные стратиграфичесике схемы и их соотношение с международной стратиграфической шкалой.
- •89. Систематика магматических горных пород.
- •90. Систематика разломов, механизмы образования разломов и трещин различных типов.
- •91. Складчатые структурные формы: параметры, морфологические и генетические типы.
- •92. Слой, морфологические типы слоистости. Первичные формы залегания осадочных горных пород.
- •93. Современные движения литосферных плит и методы их изучения.
- •94. Спектральные методы ядерной геофизики: принципы, задачи.
- •95. Сравнение основных положений учения о геосинклиналях и тектоники литосферных плит.
- •96. Стратиграфический кодекс: назначение, содержание, структура.
- •97. Строение океанической и континентальной коры.
- •98. Строение основных типов островных дуг. Зональность островодужного вулканизма.
- •99. Строение складчато-покровных областей.
- •100. Строение, магматизм и метаморфизм Алданского, Анабарского и Балтийского щитов.
- •1) Алданский щит
- •2) Анабарский щит
- •101. Структурное и стратиграфическое распределение месторождений нефти и газа.
- •102. Структуры и текстуры кристаллических пород как источник генетической информации.
- •103. Тектонические и геодинамические карты: принципы составления и легенды.
- •104. Технологические свойства и марки углей. Основные факторы катагенеза углей и нефтей.
- •105. Типы взаимоотношений стратифицированных образований и природа согласных и несогласных границ.
- •106. Типы границ литосферных плит.
- •107. Типы деформации. Особенности упругой и пластической деформации горных пород.
- •108. Торф и сапропель. Паралическое и лимническое торфонакопление.
- •109. Три категории стратиграфических подразделений (общие, региональные, местные), их номенклатура, иерархия, назначение.
- •2. Региональные
- •3. Местные (литостратиграфические)
- •4. Специальные стратиграфические подразделения
- •110. Упругие свойства горных пород: определяющие факторы и закономерности.
- •111. Условия формирования россыпных месторождений. Главные промышленно-важные минералы россыпей.
- •112. Фации метаморфизма. Принципы их выделения.
- •113. Физико-химические условия гидротермального рудообразования.
- •114. Цели геологического картирования и задачи основных этапов геолого-съемочных.
- •115. Электрические свойства горных пород: определяющие факторы и закономерности.
- •116. Ядерная геофизика: физические понятия и основные факты.
115. Электрические свойства горных пород: определяющие факторы и закономерности.
Электрические свойства элементов и минералов
Электропроводность чистых веществ (элементов) определяется в первую очередь особенностями структуры валентных электронных оболочек, которые описываются зонной теорией, т. е. их заполнением и шириной энергетической щели между валентной зоной и зоной проводимости. По этому признаку элементы разделяются на проводники — металлы, полупроводники и диэлектрики.
Электропроводность металлов определяется формулой γ= пеτ2/т, где е — заряд электрона, т — его масса; п — плотность электронов проводимости (их число в единице объема уменьшается с увеличением атомного радиуса и атомного номера); τ- время релаксации (промежуток между столкновениями), в течение которого поле действует на свободный электрон. Это наиболее изменчивый фактор ввиду его зависимости от температуры и концентрации дефектов, особенно примесных атомов. С ростом температуры сопротивление металлов возрастает, что отличает их от полупроводников, у которых. Металлы имеют частично заполненную валентными электронами верхнюю разрешенную зону и очень низкий энергетический барьер перехода электронов в зону проводимости.
У элементов-диэлектриков есть заполненная валентная зона и пустая зона проводимости с большим (более 5 эВ) энергетическим барьером между ними. Идеальные диэлектрики возможны только при температуре, близкой к 0 К. В реальных условиях многие кристаллы с четным числом валентных электронов в элементарной ячейке и не перекрывающимися энергетическими уровнями имеют свойства диэлектриков при малой концентрации примесей и в относительно слабых электрических полях.
Для полупроводников характерны либо почти полное, либо очень малое заполнение валентных зон, небольшая ширина запрещенной зоны ниже зоны проводимости. Под действием теплового возбуждения или в связи с наличием примесных атомов эта щель сужается, что обусловливает температурную или примесную проводимость. В зависимости от этих условий удельное сопротивление элементов-полупроводников меняется в широких пределах — от 10-5 до 105 Ом·м.
Среди минералов по электропроводности различают:
а) электронные проводники: ток создается направленным движением нелокализованнык электронов, сопротивление вызвано столкновениями электронов с атомами; вероятность столкновения растет с температурой. К этому классу относятся минералы самородных металлов, многие сульфиды металлов, графит и антрацит;
б) ионные проводники: ток создают переносимые нонами заряды. В твердом состоянии возможность перемещения ионов ограничена, поэтому проводимость зависит от растворимости и температуры; с ростом температуры сопротивление уменьшается; при наличии растворителей или повышенной температуре к этому классу можно отнести многие минералы: галоиды — галит, сильвин, карналлит, нитраты и некоторые окислы и гидроокислы, карбонаты, сульфаты и алюмосиликаты;
в) полупроводники: в зависимости от примесей они обнаруживают проводимость типа р (электронную, донорную) или п (дырочную, акцепторягую); сопрбтивление зависит от температуры и концентрации примесей. К этому классу относится большое число минералов — окислов, силикатов и нерастворимых солей. Есть много минералов, которые обнаруживают в зависимости от термодинамических условий и флюидной среды свойства полупроводников, ионных полупроводников или диэлектриков;
г) диэлектрики: по определению удельное сопротивление велико, но у реальных минералов оно не превышает 1015Ом·м; это нерастворимые окислы, силикаты; при высоких температурах в них возможна примесная, а также ионная проводимость, связанная с перемещением вакансий в кристаллической решетке.
Электропроводность горных пород определяется не только свойствами слагающих их минералов, но и характером срастания разных минералов. Есть минералы, которые чаще образуют проводящие срастания с другими, например пирротин, халькопирит, а другие, с довольно высокой индивидуальной электропроводностью, например галенит и магнетит, обычно образуют срастания, которые дают повышение удельного сопротивления.
Различия поляризационных и диэлектрических характеристик минералов в зависимости от состава и кристаллической структуры не очень существенны для практики электроразведки. Большее значение имеют в этом плане межфазные и межзерновые границы в горных породах. Следует обратить внимание лишь на существенное отличие от других минералов диэлектрической проницаемости воды и нефти.
Электрические свойства кристаллических пород
Так как породообразующие минералы относятся в основном к категории диэлектриков или полупроводников и их удельное сопротивление составляет 106-1015 Ом·м, неизмененные магматические породы характеризуются, как правило, довольно высокими удельными сопротивлениями. Существенной разницы между интрузивными и эффузивными палеотипными породами не отмечается.
Кайнотипные эффузивы имеют несколько меньшие значения удельных сопротивлений, чем аналогичные по химическому составу палеотипные, примерно на порядок, но это отличие не велико сравнительно с разбросом значений ρ внутри каждой группы пород. Причина в том, что состав и генезис магматических пород не являются главными определяющими факторами электропроводности горных пород, которая много больше зависит от пористости, трещиноватости, состава и концентрации флюидов. Обычно кристаллический скелет породы имеет на 6—8 порядков более высокое удельное сопротивление, чем жидкая фаза в поровом пространстве.
По этим же причинам относительно невелика дифференциация по удельному сопротивлению метаморфических пород. В большинстве случаев метаморфические породы имеют примерно на порядок меньшие удельные сопротивления, чем соответствующие им неизмененные породы; особенно сильно уменьшается ρ в процессах графитизации, сульфитизации. когда в породе приобретает большой вес металлическая проводимость, а также при серпентинизации гипербазитов.
Диэлектрическая проницаемость зависит от частоты; С увеличением частоты уменьшается (в сухих породах незначительно, а в водонасыщенных довольно сильно). Имеются данные о зависимости диэлектрической проницаемости от размера зерен: тонкодисперсные водонасыщенные породы имеют большие значения, в особенности на низких частотах. Для тонкослоистых разрезов и горных пород с преобладающей ориентацией минералов низких сингоний характерна анизотропия; вдоль слоистости диэлектрическая проницаемость всегда выше, при этом у водонасыщенных пород это различие выражено сильнее, чём у сухих.
Среди рудных минералов повышенными значениями диэлектрической проницаемости характеризуются сульфиды свинца, меди и железа (галенит, халькозин, пирит, пирротин, халькопирит), а также молибденит, окислы железа и титана (магнетит, гематит, рутил). Многие минералы и горные породы имеют близкие значения.
Удельное сопротивление магматических и метаморфических пород почти не зависит от состава и определяется типом увлажнения, содержанием и минерализацией флюидов в порах и трещинах.
Электрические свойства осадочных пород
Осадочные породы имеют ионную проводимость, связанную с водонасыщенностью и степенью минерализации пластовых и поровых вод. Проводимость осадочных пород с пористостью от первых процентов до 20—З0 % при таких вариациях минерализации вод может меняться на много порядков почти безотносительно к составу пород. Точнее, такая зависимость есть, но не прямая: пористость зависит от литологии, степень минерализации отчасти связана с составом горных пород в осадочном бассейне.
На удельное сопротивление пород разного литологического состава неодинаково влияют гидрогеологическая обстановка и химический состав подземных вод. Для терригенных пород характерна наиболее сильная зависимость от степени минерализации вод, если же она одинакова, то наименьшим сопротивлением обладают слабо сцементированные песчаники, конгломераты с большой открытой пористостью, допускающей прохождение тока по флюидам независимо от кристаллической матрицы. Более плотные и сцементированныё песчаники, алевролиты имеют, как правило, более высокое сопротивление. Сопротивление карбонатных пород: известняков, мергелей, доломитов — зависит преимущественно от трещиноватости. Ненарушенные разности (доломиты, известняки) обладают обычно довольно высоким сопротивлением, мергели чаще трещиноваты и потому имеют пониженное сопротивление, которое больше зависит от минерализации вод. Для глинистых пород (глин, аргиллитов, глинистых сланцев) гидрогеологические и гидрогеохимические условия имеют довольно слабое влияние на удельное сопротивление; эти породы стабильно имеют низкие значения сопротивлений. Диапазон значений удельного сопротивления в каждой из групп пород, как правило, шире, чем различие сопротивлений разных пород в конкретных разрезах.
