- •Оглавление
- •1. Абиотические факторы. Классификация организмов по их отношению к абиотическим факторам.
- •2. Автотрофные и гетеротрофные организмы. Трофическая пирамида.
- •3. Активные окраины континентов: типы, cтроение, зональность вулканизма.
- •4. Андезиты и геодинамические условия их проявления.
- •5. Аномалии силы тяжести Фая и Буге, причины различия корреляции их значений с рельефом.
- •1. Для приведения измеренного значения gн к уровню океана вводят поправку за высоту без учёта масс рельефа. Δg1. Эту поправку называют поправкой Фая.
- •2. Аномалии Буге вычисляются следующим образом:
- •6. Бониниты и геодинамические условия их проявления.
- •7. Важнейшие группы ископаемых животных и растений, их значение для стратиграфии и палеогеографических реконструкций.
- •8. Влияние климатических изменений в океанах и на континентах (примеры).
- •9. Гамма-гамма методы: ядерной геофизики: принципы, задачи.
- •10. Геодинамические условия проявления ультраосновных пород.
- •11. Геодинамические условия формирования диоритов.
- •12. Геологические задачи электроразведки, измерительные схемы.
- •13. Геологические задачи электроразведки, измерительные схемы.
- •14. Геологические условия образования грейзеновых и скарновых месторождений вольфрама, главные рудные минералы.
- •15. Геосферы Земли: принципы выделения, состав, мощности и взаимодействие.
- •16. Геотектонические и фациально-палеогеографические обстановки формирования нефтепроизводящих свит.
- •17. Гидротермальное минералообразование.
- •18. Главные петрохимические типы метаморфических пород.
- •19. Главные породообразующие минералы магматических горных пород.
- •20. Главные различия континентальных и морских обстановок осадконакопления и фаций (примеры).
- •21. Главные сульфидные минералы и их диагностика.
- •22. Главные типы гранитоидов и геодинамические условия их проявления.
- •23. Главные эпохи складчатости, с чем связаны. Формирование и типы орогенных поясов.
- •24. Горячие точки, плюмы и связанный с ними магматизм.
- •25. Гсз: задачи, основы методики, принципы дискретной корреляции волн.
- •26. Иерархия таксономических подразделений. Бинарная номенклатура.
- •27. Интерпретация кривых вэз: качественная интерпретация, модели среды. Проблема некорректности обратной задачи вэз и способ ее преодоления.
- •28. Интрузивные горные породы нормального ряда.
- •29. Источники излучений и детекторы в ядерной геофизике, схемы измерений.
- •30. Как влияют характеристики кристаллической структуры на физические свойства горных пород.
- •31. Какое значение имеет атомная структура элементов для физических свойств минералов и горных пород.
- •32. Классификация методов электроразведки по типам полей и моделям среды.
- •33. Климатическая зональность и климатические изменения. Отличия органического мира холодных и теплых стран.
- •34. Коллекторы, флюидоупоры, ловушки. Типы пор и коллекторов.
- •35. Континетальный и океанский рифтогенез: особенности строения и магматизма.
- •1.Осевая зона, большей частью представленная рифтовой долиной (грабеном)
- •2.Гребневая зона, по обе стороны рифтовой долины (осевого горста)
- •3.Зона флангов или склонов хребта, постепенно понижающаяся в направлении
- •4.Абиссальные равнины
- •36. Корреляция между плотностью и скоростями сейсмических волн. Объясните природу общей закономерности и отклонений от нее.
- •37. Кристаллизационно-гравитационная дифференциация. Расслоенные плутоны габброидов.
- •38. Критерии различия магматических пород разных фаций глубинности.
- •39. Литосфера и астеносфера. Явление изостазии.
- •40. Магматические месторождения и связанные с ними полезные ископаемые.
- •41. Магматические сульфидные медно-никелевые месторождения. Примеры на территории России.
- •42. Магнитное поле Земли: структура на поверхности, вариации.
- •43. Магнитные свойства горных пород: определяющие факторы и закономерности.
- •48. Методы интерпретации магнитных аномалий.
- •49. Методы разведочной геофизики и определяющие свойства горных пород.
- •50. Методы решения задач стратиграфии. Основные биологические и небиологические методы.
- •51. Методы сопротивлений; принципы, измерительные установки, различие методов вэз и эп.
- •52. Механизмы складкообразования и геологические обстановки формирования складок и складчатых систем.
- •53. Минералогия метапелитовых метаморфических пород.
- •54. Минералогия скарнов.
- •55. Мов: геологические задачи, основы методики, построение и геологическая интерпретация временных разрезов.
- •56. Мпв: геологические задачи, основы методики, определение скоростей и построение границ.
- •57. Нейтронные методы ядерной геофизики: принципы, задачи.
- •58. Некорректность обратных задач гравиразведки и магниторазведки и пути ее преодоления.
- •59. Нормальное гравитационное поле Земли, его изменение с широтой и высотой вблизи земной поверхности.
- •60. Обстановки формирования сдвиговых зон и мегапарагенезы структурных форм.
- •61. Общие черты гравиразведки и магниторазведки.
- •62. Океанографический профиль: геоморфологические элементы, биономические зоны.
- •63. Осадочно-миграционная теория происхождения нефти и газа и формирования их залежей.
- •64. Основные вулканические породы нормального ряда и геодинамические условия их проявления.
- •65. Основные геологические задачи разведочной геофизики и роль разных методов в их решении.
- •66. Основные структурные элементы Сибирской платформы и Западно-Сибирской плиты.
- •67. Основные типы углеводородных соединений в нефтях и природных газах.
- •68. Особенности состава главных породообразующих минералов магматических пород.
- •69. Палеогеографическая карта и ее особенности. Методические основы палеогеографических реконструкций. Ареал, космополиты, эндемики.
- •70. Палеомагнитные исследования и их значение для тектоники.
- •71. Палинология и микропалеонтология: объекты изучения, значение в стратиграфии и палеогеографии.
- •72. Пассивные окраины континентов: строение и состав осадочных формаций.
- •73. Первичные формы залегания магматических горных пород. Геологические методы диагностики морфологии и взаимоотношений тел.
- •74. Петрогенетические механизмы, приводящие к разнообразию состава магматических пород.
- •75. Петрохимические серии вулканических пород.
- •76. Плотность горных пород: определяющие факторы и закономерности.
- •77. Положения тектоники литосферных плит и их фактическая основа.
- •78. Понятия о залежах и месторождениях нефти и газа. Взаимоотношения нефти, газа и воды в залежах. Классификация залежей.
- •79. Пористость, проницаемость и фазовая проницаемость коллекторов. Нефть, газ и вода в коллекторах.
- •80. Породы и минералы верхней мантии.
- •81. Пояса метаморфических пород высоких давлений и их происхождение.
- •82. Преимущества и недостатки биостратиграфии в решении стратиграфических задач.
- •83. Признаки возрастных взаимоотношений минеральных ассоциаций.
- •2. Зарождение на поверхности жидкости.
- •3. Зарождение на готовых зародышах.
- •4. Зарождение на кристаллах ранней генерации.
- •84. Принципы и методы изотопной геохронологии.
- •85. Принципы систематики минералов.
- •86. Разрезы океанической коры и слагающие ее горные породы.
- •87. Расплавные и флюидные включения в минералах и их значение.
- •88. Региональные стратиграфичесике схемы и их соотношение с международной стратиграфической шкалой.
- •89. Систематика магматических горных пород.
- •90. Систематика разломов, механизмы образования разломов и трещин различных типов.
- •91. Складчатые структурные формы: параметры, морфологические и генетические типы.
- •92. Слой, морфологические типы слоистости. Первичные формы залегания осадочных горных пород.
- •93. Современные движения литосферных плит и методы их изучения.
- •94. Спектральные методы ядерной геофизики: принципы, задачи.
- •95. Сравнение основных положений учения о геосинклиналях и тектоники литосферных плит.
- •96. Стратиграфический кодекс: назначение, содержание, структура.
- •97. Строение океанической и континентальной коры.
- •98. Строение основных типов островных дуг. Зональность островодужного вулканизма.
- •99. Строение складчато-покровных областей.
- •100. Строение, магматизм и метаморфизм Алданского, Анабарского и Балтийского щитов.
- •1) Алданский щит
- •2) Анабарский щит
- •101. Структурное и стратиграфическое распределение месторождений нефти и газа.
- •102. Структуры и текстуры кристаллических пород как источник генетической информации.
- •103. Тектонические и геодинамические карты: принципы составления и легенды.
- •104. Технологические свойства и марки углей. Основные факторы катагенеза углей и нефтей.
- •105. Типы взаимоотношений стратифицированных образований и природа согласных и несогласных границ.
- •106. Типы границ литосферных плит.
- •107. Типы деформации. Особенности упругой и пластической деформации горных пород.
- •108. Торф и сапропель. Паралическое и лимническое торфонакопление.
- •109. Три категории стратиграфических подразделений (общие, региональные, местные), их номенклатура, иерархия, назначение.
- •2. Региональные
- •3. Местные (литостратиграфические)
- •4. Специальные стратиграфические подразделения
- •110. Упругие свойства горных пород: определяющие факторы и закономерности.
- •111. Условия формирования россыпных месторождений. Главные промышленно-важные минералы россыпей.
- •112. Фации метаморфизма. Принципы их выделения.
- •113. Физико-химические условия гидротермального рудообразования.
- •114. Цели геологического картирования и задачи основных этапов геолого-съемочных.
- •115. Электрические свойства горных пород: определяющие факторы и закономерности.
- •116. Ядерная геофизика: физические понятия и основные факты.
113. Физико-химические условия гидротермального рудообразования.
Гидротермальные месторождения полезных ископаемых формируются из горячих химически агрессивных газовых и жидких растворов. Большинство исследователей считают, что растворителем является вода с растворенными в ней минеральными солями и газами. Некоторые ученые, как, например, Р. Гаррелс и Д. Дихтер, при помощи термодинамических расчетов показали, что углекислота в глубинных условиях земной коры может быть также жидкой и служить растворителем, из которого могут отлагаться руды.
Рудообразующие растворы принадлежат к взвесям, коллоидным и молекулярным растворам. Для их проникновения сквозь массу горных пород необходимо, чтобы последние обладали проницаемостью, определяемой их сквозностью.
Пустоты в горных породах, используемые при гидротермальном рудообразовании, разделяются на сингенетичные и эпигенетичные. К сингенетичным относятся: 1) промежутки между зернами породообразующих минералов, 2) плоскости напластования, 3) миароловые пустоты эффузивов. Эпигенетичные пустоты разделяются на нетектонические и тектонические. Среди нетектонических могут быть указаны: 1) пустоты растворения, 2) пустоты, возникающие при увеличении или сокращении объема горных пород, 3) пустоты, связанные с кристаллизацией и перекристаллизацией, 4) пустоты брекчий оседания, 5) пустоты вулканических брекчий. К тектоническим относятся: 1) полости межпластового и внутрипластового отслоения, 2) общая тектоническая трещиноватость горных пород, 3) отдельные разломы. Для локализации гидротермального оруденения наиболее важны тектонические пустоты.
Пористость горных пород бывает общая и эффективная. Общая пористость представляет собой отношение объема всех пустот к объему породы. Эффективная пористость зависит от абсолютного размера пор.
Проницаемость определяется как свойство породы пропускать через поры жидкость или газ при наличии разности давления, выражается в мкм2. Проницаемость независима от пористости; так, например, высокопористые глины плохо проницаемы, а более низкопористые пески хорошо проницаемы, Проницаемость определяется крупностью зерен породы, конфигурацией пор, их взаиморасположением и направлением движения раствора относительно структуры породы. По величине проницаемости все породы разделяются на шесть групп: 1) очень хорошо проницаемые — с проницаемостью более 1 мкм2, 2) хорошо проницаемые — от 1 до 0,1 мкм2, 3) средне-проницаемые— от 0,1 до 0,01 мкм2, 4) слабопроницаемые — от 0,01 до 0,001 мкм2, 5) очень слабопроницаемые — от 1 до 0,1 нм2, 6) практически непроницаемые — менее 0,1 нм2. Проницаемость возрастает при предварительном гидротермальном изменении и прогреве пород.
Температура образования гидротермальных месторождений
Завершение раскристаллизации магмы на глубине происходит при температуре 1000—800 °С. Начальная температура гранитного пегматитового расплава оценивается в 800—700 °С. Непосредственное измерение температуры газовых струй современных вулканов показывает, что хотя в отдельных редких случаях она достигает 1020 °С, обычно же лежит ниже 700 °С. Определение температуры кристаллизации минералов гидротермальных жил по их газово-жидким включениям показывает максимальное ее значение 560—540 °С. Все это позволяет считать, что начальная температура гидротермального рудо-образования близка 700—600 °С и, постепенно понижаясь, может опускаться до 50—25°С. Наиболее обильное гидротермальное рудообразование происходит в интервале 400— 100 °С.
Давление при образовании гидротермальных месторождений
Давление в некоторой степени соответствует глубине формирования гидротермальных месторождений. Так, согласно И. Кушнареву, все эндогенные месторождения Кураминских гор в Средней Азии образовались в пределах глубин 500— 4500 м. Это соответствует гидростатическому давлению 5— 45 МПа и литостатическому давлению 13—115 МПа. Фактически оно может быть меньше или больше. Меньше оно может быть при образовании открытых полостей вследствие тектонических деформаций, а больше в связи с превращением воды в пар, сжатый в малом объеме пор и развивающий повышенное давление. Предпринимались попытки оценки давления при гидротермальном рудообразовании по сопоставлению кривых гомогенизации совместно находящихся включений и углекислоты, по разнице температур гомогенизации и декрепитации газово-жидких включений, по сопоставлению температур растворения зерен галита и исчезновению газового пузырька во включении, на основании расчета плотности рудообразующих минералов и другие способы. На основании почти 1000 определений давления эндогенных флюидов В. Наумов, Г. Наумов и др. пришли к заключению, что гидротермальное рудообразование осуществляется при высоких давлениях — от первых десятков до 400—500 МПа; наиболее продуктивной рудообразующей стадии соответствует давление 150—200 МПа.
