- •Оглавление
- •1. Абиотические факторы. Классификация организмов по их отношению к абиотическим факторам.
- •2. Автотрофные и гетеротрофные организмы. Трофическая пирамида.
- •3. Активные окраины континентов: типы, cтроение, зональность вулканизма.
- •4. Андезиты и геодинамические условия их проявления.
- •5. Аномалии силы тяжести Фая и Буге, причины различия корреляции их значений с рельефом.
- •1. Для приведения измеренного значения gн к уровню океана вводят поправку за высоту без учёта масс рельефа. Δg1. Эту поправку называют поправкой Фая.
- •2. Аномалии Буге вычисляются следующим образом:
- •6. Бониниты и геодинамические условия их проявления.
- •7. Важнейшие группы ископаемых животных и растений, их значение для стратиграфии и палеогеографических реконструкций.
- •8. Влияние климатических изменений в океанах и на континентах (примеры).
- •9. Гамма-гамма методы: ядерной геофизики: принципы, задачи.
- •10. Геодинамические условия проявления ультраосновных пород.
- •11. Геодинамические условия формирования диоритов.
- •12. Геологические задачи электроразведки, измерительные схемы.
- •13. Геологические задачи электроразведки, измерительные схемы.
- •14. Геологические условия образования грейзеновых и скарновых месторождений вольфрама, главные рудные минералы.
- •15. Геосферы Земли: принципы выделения, состав, мощности и взаимодействие.
- •16. Геотектонические и фациально-палеогеографические обстановки формирования нефтепроизводящих свит.
- •17. Гидротермальное минералообразование.
- •18. Главные петрохимические типы метаморфических пород.
- •19. Главные породообразующие минералы магматических горных пород.
- •20. Главные различия континентальных и морских обстановок осадконакопления и фаций (примеры).
- •21. Главные сульфидные минералы и их диагностика.
- •22. Главные типы гранитоидов и геодинамические условия их проявления.
- •23. Главные эпохи складчатости, с чем связаны. Формирование и типы орогенных поясов.
- •24. Горячие точки, плюмы и связанный с ними магматизм.
- •25. Гсз: задачи, основы методики, принципы дискретной корреляции волн.
- •26. Иерархия таксономических подразделений. Бинарная номенклатура.
- •27. Интерпретация кривых вэз: качественная интерпретация, модели среды. Проблема некорректности обратной задачи вэз и способ ее преодоления.
- •28. Интрузивные горные породы нормального ряда.
- •29. Источники излучений и детекторы в ядерной геофизике, схемы измерений.
- •30. Как влияют характеристики кристаллической структуры на физические свойства горных пород.
- •31. Какое значение имеет атомная структура элементов для физических свойств минералов и горных пород.
- •32. Классификация методов электроразведки по типам полей и моделям среды.
- •33. Климатическая зональность и климатические изменения. Отличия органического мира холодных и теплых стран.
- •34. Коллекторы, флюидоупоры, ловушки. Типы пор и коллекторов.
- •35. Континетальный и океанский рифтогенез: особенности строения и магматизма.
- •1.Осевая зона, большей частью представленная рифтовой долиной (грабеном)
- •2.Гребневая зона, по обе стороны рифтовой долины (осевого горста)
- •3.Зона флангов или склонов хребта, постепенно понижающаяся в направлении
- •4.Абиссальные равнины
- •36. Корреляция между плотностью и скоростями сейсмических волн. Объясните природу общей закономерности и отклонений от нее.
- •37. Кристаллизационно-гравитационная дифференциация. Расслоенные плутоны габброидов.
- •38. Критерии различия магматических пород разных фаций глубинности.
- •39. Литосфера и астеносфера. Явление изостазии.
- •40. Магматические месторождения и связанные с ними полезные ископаемые.
- •41. Магматические сульфидные медно-никелевые месторождения. Примеры на территории России.
- •42. Магнитное поле Земли: структура на поверхности, вариации.
- •43. Магнитные свойства горных пород: определяющие факторы и закономерности.
- •48. Методы интерпретации магнитных аномалий.
- •49. Методы разведочной геофизики и определяющие свойства горных пород.
- •50. Методы решения задач стратиграфии. Основные биологические и небиологические методы.
- •51. Методы сопротивлений; принципы, измерительные установки, различие методов вэз и эп.
- •52. Механизмы складкообразования и геологические обстановки формирования складок и складчатых систем.
- •53. Минералогия метапелитовых метаморфических пород.
- •54. Минералогия скарнов.
- •55. Мов: геологические задачи, основы методики, построение и геологическая интерпретация временных разрезов.
- •56. Мпв: геологические задачи, основы методики, определение скоростей и построение границ.
- •57. Нейтронные методы ядерной геофизики: принципы, задачи.
- •58. Некорректность обратных задач гравиразведки и магниторазведки и пути ее преодоления.
- •59. Нормальное гравитационное поле Земли, его изменение с широтой и высотой вблизи земной поверхности.
- •60. Обстановки формирования сдвиговых зон и мегапарагенезы структурных форм.
- •61. Общие черты гравиразведки и магниторазведки.
- •62. Океанографический профиль: геоморфологические элементы, биономические зоны.
- •63. Осадочно-миграционная теория происхождения нефти и газа и формирования их залежей.
- •64. Основные вулканические породы нормального ряда и геодинамические условия их проявления.
- •65. Основные геологические задачи разведочной геофизики и роль разных методов в их решении.
- •66. Основные структурные элементы Сибирской платформы и Западно-Сибирской плиты.
- •67. Основные типы углеводородных соединений в нефтях и природных газах.
- •68. Особенности состава главных породообразующих минералов магматических пород.
- •69. Палеогеографическая карта и ее особенности. Методические основы палеогеографических реконструкций. Ареал, космополиты, эндемики.
- •70. Палеомагнитные исследования и их значение для тектоники.
- •71. Палинология и микропалеонтология: объекты изучения, значение в стратиграфии и палеогеографии.
- •72. Пассивные окраины континентов: строение и состав осадочных формаций.
- •73. Первичные формы залегания магматических горных пород. Геологические методы диагностики морфологии и взаимоотношений тел.
- •74. Петрогенетические механизмы, приводящие к разнообразию состава магматических пород.
- •75. Петрохимические серии вулканических пород.
- •76. Плотность горных пород: определяющие факторы и закономерности.
- •77. Положения тектоники литосферных плит и их фактическая основа.
- •78. Понятия о залежах и месторождениях нефти и газа. Взаимоотношения нефти, газа и воды в залежах. Классификация залежей.
- •79. Пористость, проницаемость и фазовая проницаемость коллекторов. Нефть, газ и вода в коллекторах.
- •80. Породы и минералы верхней мантии.
- •81. Пояса метаморфических пород высоких давлений и их происхождение.
- •82. Преимущества и недостатки биостратиграфии в решении стратиграфических задач.
- •83. Признаки возрастных взаимоотношений минеральных ассоциаций.
- •2. Зарождение на поверхности жидкости.
- •3. Зарождение на готовых зародышах.
- •4. Зарождение на кристаллах ранней генерации.
- •84. Принципы и методы изотопной геохронологии.
- •85. Принципы систематики минералов.
- •86. Разрезы океанической коры и слагающие ее горные породы.
- •87. Расплавные и флюидные включения в минералах и их значение.
- •88. Региональные стратиграфичесике схемы и их соотношение с международной стратиграфической шкалой.
- •89. Систематика магматических горных пород.
- •90. Систематика разломов, механизмы образования разломов и трещин различных типов.
- •91. Складчатые структурные формы: параметры, морфологические и генетические типы.
- •92. Слой, морфологические типы слоистости. Первичные формы залегания осадочных горных пород.
- •93. Современные движения литосферных плит и методы их изучения.
- •94. Спектральные методы ядерной геофизики: принципы, задачи.
- •95. Сравнение основных положений учения о геосинклиналях и тектоники литосферных плит.
- •96. Стратиграфический кодекс: назначение, содержание, структура.
- •97. Строение океанической и континентальной коры.
- •98. Строение основных типов островных дуг. Зональность островодужного вулканизма.
- •99. Строение складчато-покровных областей.
- •100. Строение, магматизм и метаморфизм Алданского, Анабарского и Балтийского щитов.
- •1) Алданский щит
- •2) Анабарский щит
- •101. Структурное и стратиграфическое распределение месторождений нефти и газа.
- •102. Структуры и текстуры кристаллических пород как источник генетической информации.
- •103. Тектонические и геодинамические карты: принципы составления и легенды.
- •104. Технологические свойства и марки углей. Основные факторы катагенеза углей и нефтей.
- •105. Типы взаимоотношений стратифицированных образований и природа согласных и несогласных границ.
- •106. Типы границ литосферных плит.
- •107. Типы деформации. Особенности упругой и пластической деформации горных пород.
- •108. Торф и сапропель. Паралическое и лимническое торфонакопление.
- •109. Три категории стратиграфических подразделений (общие, региональные, местные), их номенклатура, иерархия, назначение.
- •2. Региональные
- •3. Местные (литостратиграфические)
- •4. Специальные стратиграфические подразделения
- •110. Упругие свойства горных пород: определяющие факторы и закономерности.
- •111. Условия формирования россыпных месторождений. Главные промышленно-важные минералы россыпей.
- •112. Фации метаморфизма. Принципы их выделения.
- •113. Физико-химические условия гидротермального рудообразования.
- •114. Цели геологического картирования и задачи основных этапов геолого-съемочных.
- •115. Электрические свойства горных пород: определяющие факторы и закономерности.
- •116. Ядерная геофизика: физические понятия и основные факты.
50. Методы решения задач стратиграфии. Основные биологические и небиологические методы.
Основными задачами стратиграфии являются определение относительного возраста горных пород, и последовательность их образования (расчленение осадочных или вулканических толщ на интервалы).
Основными методами решения этих задач являются палеонтологические (биостратиграфические) и непалеонтологические методы. Для позднего докембрия и фанерозоя ведущими являются палеонтологические методы.
Непалеонтологические методы:
1) литологические
2) геофизические
3) общегеологические методы
4) ритмостратиграфия и климатостратиграфия.
Литологические методы – выделение интервалов разреза (слоев или групп слоев), отличающихся от подстилающих и перекрывающих интервалов по цвету, вещественному составу, структуре и текстуре. Затем выделяют слои и пачки отличные от таковых смежных и прослеживают на соседних участках. Такие слои и пачки называют маркирующими горизонтами. К литологическим относят и минералого – петрографические методы, тогда слои и пачки сравнивают по минералогическому составу.
Геофизические методы – широко используют электрический каротаж (ПС, КС), радиоактивный каротаж (битуминозные – высокая радиоактивность, калийные соли и т.д. - низкая).
Палеомагнитный метод – магнитные полюса Земли менялись неоднократно в пределах крупных блоков земной коры, а одновозрастные породы в пределах таких блоков обладают одинаковым вектором первичной намагниченности. Геомагнитные инверсии – события глобального масштаба, поэтому теоретически возможна хронологическая корреляция прямо и обратно намагниченных пород.
Общегеологические методы – основаны на принципе (законе) Стенона. Используют также метод выделения структурных этажей (сопоставление толщ, одинаковых по отношению к границе несогласия), метод изучения взаимоотношений с изверженными породами (выяснение последовательности образования горных пород).
Ритмостратиграфия – изучение чередования различных толщ в разрезах, (определение чередующихся наборов – ритмов и их границ).
Климатостратиграфия – применяется для четвертичных отложений, основан на чередовании резких похолоданий и потеплений, что определило смену литофациальных и палеонтологических комплексов.
Палеонтологические методы:
Метод руководящих форм – выбирают 1-3 вида, наиболее часто встречающихся в слое и коррелируют их между собой в разных по латерали частях.
Метод анализа фаунистических комплексов - в отличие от метода руководящих форм используется весь палеонтологический материал или определенные группы вымерших организмов, + суть в том что корреляция и выводы базируются не на единичных формах (видах), а на совокупности всех форм выбранной группы или различных групп.
Эволюционный (филогенетический) метод - определение относительного возраста слоев, расчленение и корелляция разрезов производят по уровню эволюционного развития выбранных форм (рода, семейств и т.д.).
51. Методы сопротивлений; принципы, измерительные установки, различие методов вэз и эп.
Электроразведочный метод – совокупность приемов исследования, объединенных одним типом поля (и способом его генерации), а также определенным способом геологических задач. Разнообразие типов полей, способов их генерации и измерения определяет существование более 50 методов.
Методы сопротивлений (из таблицы): ВЭЗ, ЭП, МЗ(метод заряда), а также ДЭЗ (дипольно-электрическое зондирование), ЭПСГ(Пр. установкой срединного градиента), ДЭП (дипольно-электрическое);
М
етоды
для определения удельного сопротивления
и диэлектрической проницаемости (для
расширения кругозора): ЗС (з. становлением),
МВЗ(магнито-вариационное З.), ЧЗ(частотное),
МЗ(метод заряда), ЕП(метод естественного
поля), ВП(вызванной поляризации), СПК(м.
поляризац. кривых), ЧИМ(частотное
извлечение металлов) и др.
Методы сопротивлений, как и прочие, нацелены для оценки параметров среды: удельное сопротивление.
Генерация электромагнитных полей:
Для методов сопротивлений используется тип возбуждения искусственных поля - поля постоянного тока или сверхнизкочастотные (4-5 Гц). Низкие частоты используют вместо постоянного тока для предотвращения поляризации линии приема, на постоянном токе это достигается использованием неполяризующихся электродов.
Электрическое поле в среде создается с помощью заземлений – металлические штыри или неполяризующиеся электроды. К ним подается ток от батареи галванических элементов, аккумуляторов или генераторов постоянного ли переменного тока. Ток в цепи , состоящей из источника энергии, проводов, заземлений и геоэлектрического разреза, прямо пропорционален ЭДС источника и обратно пропорционален суммарному сопротивлению цепи.
Низкочастотный переменный ток в электроразведке методом сопротивлений создается специальным генератором. Низкие частоты заметно не уменьшают глубину исследований и не допускают поляризацию приемных заземлений, кроме того, не регистрируют блуждающие квазипостоянные токи.
Измерение электромагнитных полей:
Измеряемыми параметрами в электроразведке – разность потенциалов, составяляющие напряженности электрического поля E. Они измеряются в форме электрических сигналов датчиками с различными принципиальными схемами и конструкцией. Простейшим входным преобразователем электрического поля – приемный диполь MN. Эта схема измеряет разность потенциалов, зависящую от разноса заземлений rMN и составляющей напряженности электрического поля в направлении измерительного диполя. В однородном поле(Е=const), U=rMNE.
Определенную сложность представляет исключение поляризационных помех и конечного сопротивления заземлений.
Измерительные установки.
С
имметричную
четырехэлектродную установку ABMN,
у которой расстояние MN<AB/3.
Его чаще используют при ВЭЗ(до 1000м.) Для
изучения горизонтально неоднородных
разрезов лучше применять несимметричные
установки (3-х электродные и т.д.). Дипольные
установки, в
которых измерительная цепь вынесена
за пределы установки питания на расстояние
R>размеры
цепей, применяются для ДЗ(0,5-5км). Дипольные
установки характеризуются следующими
параметрами: AB
и MN
– длины питающейr
- приемной линии,
- угол между AB
и осью зондирования (r),
- угол между MN
и r.
При =0
радиальная и параллельная установки
переходят в осевую, а при
=90 – азимутальные и параллельные
установки преобразуются в экваториальную.
Установки взаимного питания основаны на принципе взаимозаменяемости AB и MN.
Сравнительный анализ ВЭЗ и ЭП.
Характеристики методов |
ВЭЗ |
ЭП |
Тип поля: природа и частотный состав |
постоянного или переменного тока разной частоты (до 20 Гц) |
Постоянный или переменный ток (1-20Гц). |
Задачи |
определение мощности и состава покровных и коренных отложений, глубины залегания фундамента, расчленение осадочных толщ, что очень важно для структурно-геологического объемного картирования; б) оценка геометрических параметров и физического состояния массива горных пород, представляющая большой интерес для инженерно-геологического, мерзлотно-гляциологического и гидрогеологического картирования; в) поиски пластовых, как правило, нерудных полезных ископаемых; г) изучение геосфер Земли и глубинной электропроводности. |
применяют для решения геологических задач, связанных с картированием крутозалегающих (углы падения больше 10—20°) осадочных, изверженных, метаморфических толщ, рудных и нерудных полезных ископаемых. |
Способ генерации полей |
Поле постепенно проникает на все большие глубины на счет увеличения разносов. Приемы: дистанционный и частотно-временной. |
Постоянность глубины разведки. Постоянные или мало изменяющиеся разносы. Глубина должна обеспечивать получение максимальных аномалий наблюденных или расчетных параметров вдоль профилей. |
Геоэлектри ческая модель |
Рис.2(а) Горизонтально-слоистая среда
|
Рис.2 (б,в,г,д,е) 1.Вертикально-слоистая среда, 2.включения простой формы в однородной или в горизонтально-слоистой среде, 3.рельеф поверхности опорного геоэлектрического горизонта |
Схемы измерительных установок, расположение их относительно изучаемых объектов |
Рис. II.I. Одно- и многоканальные приборы. Симметричная 4-х электродная установка с MN<AB/3. В избранной точке (центре зондирования) устанавливают батарею, 2 катушки с проводом для разноса питающих электродов и на L=1-2м заземляют 2 приемных электрода MN. После окончания зондирования и построения кривой ВЭЗ аппаратуру и оборудование переносят на новую точку вдоль разведочных линий. |
Простейшей установкой для ЭП является симметричная AMNB, когда все электроды AMNB с соединяющими их проводами последовательно перемещают вдоль линии наблюдений и через постоянные расстояния измеряют кажущиеся сопротивления. При электропрофилировании любой установкой профили прокладывают вкрест предполагаемого простирания структур или искомых объектов. |
Метод |
В каждой точке зондирования получить информацию об изменениях электрических свойств с глубиной |
Получить информацию в каждой точке профиля примерно на одной глубине. |
Физико-геологические условия районов работ |
Горизонтально и полого залегающие (10-15) среды. Мощность слоев и толщ превышает глубины залегания. Глубина до 1км. |
Условия четко-выраженной дифференциации пород по электрическим свойствам в горизонтальном направлении. крутозалегающих (углы падения больше 10—20°) осадочных, изверженных, метаморфических толщ. Глубина до 500 м. |
Результат |
Кажущееся сопротивление(k), районирование по типам геоэлектр. Разреза и обосновании выбора моделей для количественной интерпретации., оценке надежности и их геол. Истолкованию. |
Кажущееся сопротивление(k). Графики, карты графиков и карты k, вероятно-статистические методы выявления аномалий. |
Типы кривых |
Кривые зондирования: Двуслойные, трехслойные, четырехслойные. Рис.16 |
|
