- •Оглавление
- •1. Абиотические факторы. Классификация организмов по их отношению к абиотическим факторам.
- •2. Автотрофные и гетеротрофные организмы. Трофическая пирамида.
- •3. Активные окраины континентов: типы, cтроение, зональность вулканизма.
- •4. Андезиты и геодинамические условия их проявления.
- •5. Аномалии силы тяжести Фая и Буге, причины различия корреляции их значений с рельефом.
- •1. Для приведения измеренного значения gн к уровню океана вводят поправку за высоту без учёта масс рельефа. Δg1. Эту поправку называют поправкой Фая.
- •2. Аномалии Буге вычисляются следующим образом:
- •6. Бониниты и геодинамические условия их проявления.
- •7. Важнейшие группы ископаемых животных и растений, их значение для стратиграфии и палеогеографических реконструкций.
- •8. Влияние климатических изменений в океанах и на континентах (примеры).
- •9. Гамма-гамма методы: ядерной геофизики: принципы, задачи.
- •10. Геодинамические условия проявления ультраосновных пород.
- •11. Геодинамические условия формирования диоритов.
- •12. Геологические задачи электроразведки, измерительные схемы.
- •13. Геологические задачи электроразведки, измерительные схемы.
- •14. Геологические условия образования грейзеновых и скарновых месторождений вольфрама, главные рудные минералы.
- •15. Геосферы Земли: принципы выделения, состав, мощности и взаимодействие.
- •16. Геотектонические и фациально-палеогеографические обстановки формирования нефтепроизводящих свит.
- •17. Гидротермальное минералообразование.
- •18. Главные петрохимические типы метаморфических пород.
- •19. Главные породообразующие минералы магматических горных пород.
- •20. Главные различия континентальных и морских обстановок осадконакопления и фаций (примеры).
- •21. Главные сульфидные минералы и их диагностика.
- •22. Главные типы гранитоидов и геодинамические условия их проявления.
- •23. Главные эпохи складчатости, с чем связаны. Формирование и типы орогенных поясов.
- •24. Горячие точки, плюмы и связанный с ними магматизм.
- •25. Гсз: задачи, основы методики, принципы дискретной корреляции волн.
- •26. Иерархия таксономических подразделений. Бинарная номенклатура.
- •27. Интерпретация кривых вэз: качественная интерпретация, модели среды. Проблема некорректности обратной задачи вэз и способ ее преодоления.
- •28. Интрузивные горные породы нормального ряда.
- •29. Источники излучений и детекторы в ядерной геофизике, схемы измерений.
- •30. Как влияют характеристики кристаллической структуры на физические свойства горных пород.
- •31. Какое значение имеет атомная структура элементов для физических свойств минералов и горных пород.
- •32. Классификация методов электроразведки по типам полей и моделям среды.
- •33. Климатическая зональность и климатические изменения. Отличия органического мира холодных и теплых стран.
- •34. Коллекторы, флюидоупоры, ловушки. Типы пор и коллекторов.
- •35. Континетальный и океанский рифтогенез: особенности строения и магматизма.
- •1.Осевая зона, большей частью представленная рифтовой долиной (грабеном)
- •2.Гребневая зона, по обе стороны рифтовой долины (осевого горста)
- •3.Зона флангов или склонов хребта, постепенно понижающаяся в направлении
- •4.Абиссальные равнины
- •36. Корреляция между плотностью и скоростями сейсмических волн. Объясните природу общей закономерности и отклонений от нее.
- •37. Кристаллизационно-гравитационная дифференциация. Расслоенные плутоны габброидов.
- •38. Критерии различия магматических пород разных фаций глубинности.
- •39. Литосфера и астеносфера. Явление изостазии.
- •40. Магматические месторождения и связанные с ними полезные ископаемые.
- •41. Магматические сульфидные медно-никелевые месторождения. Примеры на территории России.
- •42. Магнитное поле Земли: структура на поверхности, вариации.
- •43. Магнитные свойства горных пород: определяющие факторы и закономерности.
- •48. Методы интерпретации магнитных аномалий.
- •49. Методы разведочной геофизики и определяющие свойства горных пород.
- •50. Методы решения задач стратиграфии. Основные биологические и небиологические методы.
- •51. Методы сопротивлений; принципы, измерительные установки, различие методов вэз и эп.
- •52. Механизмы складкообразования и геологические обстановки формирования складок и складчатых систем.
- •53. Минералогия метапелитовых метаморфических пород.
- •54. Минералогия скарнов.
- •55. Мов: геологические задачи, основы методики, построение и геологическая интерпретация временных разрезов.
- •56. Мпв: геологические задачи, основы методики, определение скоростей и построение границ.
- •57. Нейтронные методы ядерной геофизики: принципы, задачи.
- •58. Некорректность обратных задач гравиразведки и магниторазведки и пути ее преодоления.
- •59. Нормальное гравитационное поле Земли, его изменение с широтой и высотой вблизи земной поверхности.
- •60. Обстановки формирования сдвиговых зон и мегапарагенезы структурных форм.
- •61. Общие черты гравиразведки и магниторазведки.
- •62. Океанографический профиль: геоморфологические элементы, биономические зоны.
- •63. Осадочно-миграционная теория происхождения нефти и газа и формирования их залежей.
- •64. Основные вулканические породы нормального ряда и геодинамические условия их проявления.
- •65. Основные геологические задачи разведочной геофизики и роль разных методов в их решении.
- •66. Основные структурные элементы Сибирской платформы и Западно-Сибирской плиты.
- •67. Основные типы углеводородных соединений в нефтях и природных газах.
- •68. Особенности состава главных породообразующих минералов магматических пород.
- •69. Палеогеографическая карта и ее особенности. Методические основы палеогеографических реконструкций. Ареал, космополиты, эндемики.
- •70. Палеомагнитные исследования и их значение для тектоники.
- •71. Палинология и микропалеонтология: объекты изучения, значение в стратиграфии и палеогеографии.
- •72. Пассивные окраины континентов: строение и состав осадочных формаций.
- •73. Первичные формы залегания магматических горных пород. Геологические методы диагностики морфологии и взаимоотношений тел.
- •74. Петрогенетические механизмы, приводящие к разнообразию состава магматических пород.
- •75. Петрохимические серии вулканических пород.
- •76. Плотность горных пород: определяющие факторы и закономерности.
- •77. Положения тектоники литосферных плит и их фактическая основа.
- •78. Понятия о залежах и месторождениях нефти и газа. Взаимоотношения нефти, газа и воды в залежах. Классификация залежей.
- •79. Пористость, проницаемость и фазовая проницаемость коллекторов. Нефть, газ и вода в коллекторах.
- •80. Породы и минералы верхней мантии.
- •81. Пояса метаморфических пород высоких давлений и их происхождение.
- •82. Преимущества и недостатки биостратиграфии в решении стратиграфических задач.
- •83. Признаки возрастных взаимоотношений минеральных ассоциаций.
- •2. Зарождение на поверхности жидкости.
- •3. Зарождение на готовых зародышах.
- •4. Зарождение на кристаллах ранней генерации.
- •84. Принципы и методы изотопной геохронологии.
- •85. Принципы систематики минералов.
- •86. Разрезы океанической коры и слагающие ее горные породы.
- •87. Расплавные и флюидные включения в минералах и их значение.
- •88. Региональные стратиграфичесике схемы и их соотношение с международной стратиграфической шкалой.
- •89. Систематика магматических горных пород.
- •90. Систематика разломов, механизмы образования разломов и трещин различных типов.
- •91. Складчатые структурные формы: параметры, морфологические и генетические типы.
- •92. Слой, морфологические типы слоистости. Первичные формы залегания осадочных горных пород.
- •93. Современные движения литосферных плит и методы их изучения.
- •94. Спектральные методы ядерной геофизики: принципы, задачи.
- •95. Сравнение основных положений учения о геосинклиналях и тектоники литосферных плит.
- •96. Стратиграфический кодекс: назначение, содержание, структура.
- •97. Строение океанической и континентальной коры.
- •98. Строение основных типов островных дуг. Зональность островодужного вулканизма.
- •99. Строение складчато-покровных областей.
- •100. Строение, магматизм и метаморфизм Алданского, Анабарского и Балтийского щитов.
- •1) Алданский щит
- •2) Анабарский щит
- •101. Структурное и стратиграфическое распределение месторождений нефти и газа.
- •102. Структуры и текстуры кристаллических пород как источник генетической информации.
- •103. Тектонические и геодинамические карты: принципы составления и легенды.
- •104. Технологические свойства и марки углей. Основные факторы катагенеза углей и нефтей.
- •105. Типы взаимоотношений стратифицированных образований и природа согласных и несогласных границ.
- •106. Типы границ литосферных плит.
- •107. Типы деформации. Особенности упругой и пластической деформации горных пород.
- •108. Торф и сапропель. Паралическое и лимническое торфонакопление.
- •109. Три категории стратиграфических подразделений (общие, региональные, местные), их номенклатура, иерархия, назначение.
- •2. Региональные
- •3. Местные (литостратиграфические)
- •4. Специальные стратиграфические подразделения
- •110. Упругие свойства горных пород: определяющие факторы и закономерности.
- •111. Условия формирования россыпных месторождений. Главные промышленно-важные минералы россыпей.
- •112. Фации метаморфизма. Принципы их выделения.
- •113. Физико-химические условия гидротермального рудообразования.
- •114. Цели геологического картирования и задачи основных этапов геолого-съемочных.
- •115. Электрические свойства горных пород: определяющие факторы и закономерности.
- •116. Ядерная геофизика: физические понятия и основные факты.
37. Кристаллизационно-гравитационная дифференциация. Расслоенные плутоны габброидов.
1. Кристаллизационная дифференциация. После кристаллизации более основных минералов оставшаяся более легкоплавкая и более кислая часть расплава уйдет по трещинам в результате тектонических подвижек и обособится от ранних продуктов кристаллизации. При этом на старом месте останутся минералы ультраосновного парагенезиса, а на новом месте они образовываться уже не будут и температура расплава уже ниже, и состав его стал более кислым. Возникнет основная или средняя порода. При неоднократном отделении все более поздних и более кислых продуктов от более ранних можно получить весь ряд дифференциатов (или дериватов) от ультраосновных до средних. Подтверждение этому видят в частом расположении на небольшом удалении друг от друга массивов основных и ультраосновных пород, а также в геохимических данных, например, изотопных отношениях некоторых элементов. Изотопный состав некоторых элементов достаточно инертен и остается неизменным даже в расплаве, поэтому близкие изотопные отношения в таких массивах свидетельствуют об их родственном образовании.
2. Гравитационная дифференциация. Выкристаллизовавшиеся первыми тяжелые рудные и фемические минералы (существенно Mg-Fe), имеют большую плотность, чем плотность расплава. Поэтому под действием сил гравитации они могут опускаться на дно магматической камеры. Так образуются донные залежи хромита в массивах ультраосновных пород. Гравитационная дифференциация характерна для ультраосновных, основных и щелочных магм, поскольку эти магмы имеют низкую вязкость из-за меньшего содержания кремнезема. Однако в щелочных магмах возможено другое проявление гравитационной дифференциации. Появление вначале каркасных алюмосиликатов с низкой плотностью (лейцит или полевой шпат) приводит к их всплыванию и накоплению в верхней части магматической камеры. Так объясняется образование уникальных мономинеральных лейцитовых пород – сынныритов.
Механизм формирования расслоенных плутонов
Результаты кристаллизационной дифференциации толеитовой базальтовой магмы можно наглядно наблюдать в расслоенных плутонах, образованных габбро, анортозитами, норитами, пироксенитами, перидотитами, дунитами. Часть из них представлена лополитами, другие имеют воронкообразную форму, третьи слагают дайкообразные тела, четвертые обнажены в виде пластообразных интрузивных залежей. Имеются и расслоенные плутоны а также множество мелких силлов мощностью в десятки-первые сотни метров, в которых также видна внутренняя расслоенность.
Огромные расслоенные плутоны архейского и протерозойского возраста подчеркивают высокую активность магматических процессов, протекавших в докембрии. Появление столь крупных масс основной магмы связывают не только с интенсивным нагревом мантии Земли под влиянием эндогенных тепловых источников, но и с падением крупных метеоритов.
Характерной особенностью расслоенных плутонов является неоднородное внутреннее строение. Вдоль контактов прослеживаются краевые зоны мощностью от нескольких десятков до 200—300 м, сложенные мелкозернистыми габбро или норитами, которые образовались при быстром затвердевании исходного магматического расплава. Внутренняя часть плутонов занята расслоенным комплексом. Различают три главных элемента расслоенности: 1) общую стратификацию; 2) ритмичную слоистость; 3) скрытую расслоенность.
Общая стратификация выражается в наличии зон разного состава, последовательно сменяющих друг друга по вертикали. В нижней части плутонов залегают дуниты, перидотиты, пироксениты. Вверх по разрезу они сменяются норитами и габбро, а вблизи кровли появляются ферродиориты. Мощность отдельных зон варьирует от сотен метров до нескольких километров.
Ритмичная слоистость выражена в чередовании параллельных или почти параллельных слоев мощностью от долей сантиметра до 1-2 м, которые отличаются количественными соотношениями породообразующих минералов: оливина, орто- и клинопироксена, плагиоклаза. Тяжелые минералы — оливин и пироксен — скапливаются в нижних частях слоев, а более легкий плагиоклаз — в верхней части слоя. Возникает градационная слоистость, напоминающая строение ритмических осадочных толщ, например, флиша. Пачки магматических пород с ритмичной слоистостью достигают мощности во многие сотни метров. В большинстве расслоенных плутонов слои залегают почти горизонтально и дискордантны по отношению к крутым боковым контактам и краевым зонам закалки.
Скрытая расслоенность выражается в закономерном изменении состава одних и тех же минералов по вертикали. В нижних частях расслоенных плутонов сконцентрированы наиболее магнезиальные оливины и пироксены, а также самые кальциевые плагиоклазы. Вверх по разрезу оливины и пироксены становятся все более железистыми, а плагиоклаз — все более натровым. При этом доля пород, обогащенных оливином и пироксеном, уменьшается, а доля пород с преобладанием плагиоклаза, наоборот, возрастает.
Внутреннее строение расслоенных плутонов не оставляет сомнения в том, что их гетерогенность связана с кристаллизационной дифференциацией базальтовой магмы.
Последующие детальные исследования привели к более сложным моделям. Было установлено, что центростремительная кристаллизация магматических камер от краев вовнутрь ограничена лишь узкой краевой зоной, примыкающей к холодным боковым породам. Основной объем расслоенных плутонов кристаллизовался снизу вверх, поскольку исходные магмы практически не содержали воды, и температуры их ликвидуса и солидуса возрастали с глубиной.
Если появляется относительно тяжелый сульфидный расплав, который не смешивается с силикатной магмой, то он погружается в придонную часть магматической камеры.
Общая
стратификация расслоенных плутонов
отражает последовательность выделения
кристаллических фаз из магмы. Дуниты,
перидотиты, пироксениты, залегающие
вблизи подошвы интрузивных тел,
представляют собой ранние кумулаты,
состоящие из кристаллов оливина и
ортопироксена. Выше оливин исчезает и
сменяется пижонитом — низкокальциевым
пироксеном, возникшим в результате
реакции оливина с остаточным расплавом.
Начало кристаллизации плагиоклаза
определяет переход к габброидам.
Рис. Схема кристаллизации расслоенного плутона 1 — главный объем расплава; 2 — зона кристаллизации; 3 — затвердевшие части интрузива; 4 — зона закалки; 5 — остаточный расплав; 6 — жильные породы; 7 — вмещающие породы; 8 — конвекционные токи; прямыми стрелками показано направление движения фронта затвердевания.
Существенное значение имеют процессы плавления сиалического корового материала на контакте с базитовыми расслоенными плутонами и его растворение в мантийной магме. Особенно широко эти процессы проявлены вблизи кровли расслоенных плутонов. Кислые породы, залегающие в верхних частях таких плутонов, являются не столько продуктами дифференциации базальтовой магмы, сколько результатом частичного плавления вмещающих пород земной коры.
Основной вывод — состав твердых фаз и их соотношения контролируются кристаллизационной дифференциацией. Особенно ярко эта закономерность проявлена в общей стратификации и в скрытой расслоенности. В то же время эффектная ритмичная слоистость далеко не всегда является результатом одной лишь гравитационной дифференциации. Разработаны модели ритмичной кристаллизации, объясняющие закономерное чередование слоев разного состава диффузионными эффектами на границе кристалл—расплав.
