- •Оглавление
- •1. Абиотические факторы. Классификация организмов по их отношению к абиотическим факторам.
- •2. Автотрофные и гетеротрофные организмы. Трофическая пирамида.
- •3. Активные окраины континентов: типы, cтроение, зональность вулканизма.
- •4. Андезиты и геодинамические условия их проявления.
- •5. Аномалии силы тяжести Фая и Буге, причины различия корреляции их значений с рельефом.
- •1. Для приведения измеренного значения gн к уровню океана вводят поправку за высоту без учёта масс рельефа. Δg1. Эту поправку называют поправкой Фая.
- •2. Аномалии Буге вычисляются следующим образом:
- •6. Бониниты и геодинамические условия их проявления.
- •7. Важнейшие группы ископаемых животных и растений, их значение для стратиграфии и палеогеографических реконструкций.
- •8. Влияние климатических изменений в океанах и на континентах (примеры).
- •9. Гамма-гамма методы: ядерной геофизики: принципы, задачи.
- •10. Геодинамические условия проявления ультраосновных пород.
- •11. Геодинамические условия формирования диоритов.
- •12. Геологические задачи электроразведки, измерительные схемы.
- •13. Геологические задачи электроразведки, измерительные схемы.
- •14. Геологические условия образования грейзеновых и скарновых месторождений вольфрама, главные рудные минералы.
- •15. Геосферы Земли: принципы выделения, состав, мощности и взаимодействие.
- •16. Геотектонические и фациально-палеогеографические обстановки формирования нефтепроизводящих свит.
- •17. Гидротермальное минералообразование.
- •18. Главные петрохимические типы метаморфических пород.
- •19. Главные породообразующие минералы магматических горных пород.
- •20. Главные различия континентальных и морских обстановок осадконакопления и фаций (примеры).
- •21. Главные сульфидные минералы и их диагностика.
- •22. Главные типы гранитоидов и геодинамические условия их проявления.
- •23. Главные эпохи складчатости, с чем связаны. Формирование и типы орогенных поясов.
- •24. Горячие точки, плюмы и связанный с ними магматизм.
- •25. Гсз: задачи, основы методики, принципы дискретной корреляции волн.
- •26. Иерархия таксономических подразделений. Бинарная номенклатура.
- •27. Интерпретация кривых вэз: качественная интерпретация, модели среды. Проблема некорректности обратной задачи вэз и способ ее преодоления.
- •28. Интрузивные горные породы нормального ряда.
- •29. Источники излучений и детекторы в ядерной геофизике, схемы измерений.
- •30. Как влияют характеристики кристаллической структуры на физические свойства горных пород.
- •31. Какое значение имеет атомная структура элементов для физических свойств минералов и горных пород.
- •32. Классификация методов электроразведки по типам полей и моделям среды.
- •33. Климатическая зональность и климатические изменения. Отличия органического мира холодных и теплых стран.
- •34. Коллекторы, флюидоупоры, ловушки. Типы пор и коллекторов.
- •35. Континетальный и океанский рифтогенез: особенности строения и магматизма.
- •1.Осевая зона, большей частью представленная рифтовой долиной (грабеном)
- •2.Гребневая зона, по обе стороны рифтовой долины (осевого горста)
- •3.Зона флангов или склонов хребта, постепенно понижающаяся в направлении
- •4.Абиссальные равнины
- •36. Корреляция между плотностью и скоростями сейсмических волн. Объясните природу общей закономерности и отклонений от нее.
- •37. Кристаллизационно-гравитационная дифференциация. Расслоенные плутоны габброидов.
- •38. Критерии различия магматических пород разных фаций глубинности.
- •39. Литосфера и астеносфера. Явление изостазии.
- •40. Магматические месторождения и связанные с ними полезные ископаемые.
- •41. Магматические сульфидные медно-никелевые месторождения. Примеры на территории России.
- •42. Магнитное поле Земли: структура на поверхности, вариации.
- •43. Магнитные свойства горных пород: определяющие факторы и закономерности.
- •48. Методы интерпретации магнитных аномалий.
- •49. Методы разведочной геофизики и определяющие свойства горных пород.
- •50. Методы решения задач стратиграфии. Основные биологические и небиологические методы.
- •51. Методы сопротивлений; принципы, измерительные установки, различие методов вэз и эп.
- •52. Механизмы складкообразования и геологические обстановки формирования складок и складчатых систем.
- •53. Минералогия метапелитовых метаморфических пород.
- •54. Минералогия скарнов.
- •55. Мов: геологические задачи, основы методики, построение и геологическая интерпретация временных разрезов.
- •56. Мпв: геологические задачи, основы методики, определение скоростей и построение границ.
- •57. Нейтронные методы ядерной геофизики: принципы, задачи.
- •58. Некорректность обратных задач гравиразведки и магниторазведки и пути ее преодоления.
- •59. Нормальное гравитационное поле Земли, его изменение с широтой и высотой вблизи земной поверхности.
- •60. Обстановки формирования сдвиговых зон и мегапарагенезы структурных форм.
- •61. Общие черты гравиразведки и магниторазведки.
- •62. Океанографический профиль: геоморфологические элементы, биономические зоны.
- •63. Осадочно-миграционная теория происхождения нефти и газа и формирования их залежей.
- •64. Основные вулканические породы нормального ряда и геодинамические условия их проявления.
- •65. Основные геологические задачи разведочной геофизики и роль разных методов в их решении.
- •66. Основные структурные элементы Сибирской платформы и Западно-Сибирской плиты.
- •67. Основные типы углеводородных соединений в нефтях и природных газах.
- •68. Особенности состава главных породообразующих минералов магматических пород.
- •69. Палеогеографическая карта и ее особенности. Методические основы палеогеографических реконструкций. Ареал, космополиты, эндемики.
- •70. Палеомагнитные исследования и их значение для тектоники.
- •71. Палинология и микропалеонтология: объекты изучения, значение в стратиграфии и палеогеографии.
- •72. Пассивные окраины континентов: строение и состав осадочных формаций.
- •73. Первичные формы залегания магматических горных пород. Геологические методы диагностики морфологии и взаимоотношений тел.
- •74. Петрогенетические механизмы, приводящие к разнообразию состава магматических пород.
- •75. Петрохимические серии вулканических пород.
- •76. Плотность горных пород: определяющие факторы и закономерности.
- •77. Положения тектоники литосферных плит и их фактическая основа.
- •78. Понятия о залежах и месторождениях нефти и газа. Взаимоотношения нефти, газа и воды в залежах. Классификация залежей.
- •79. Пористость, проницаемость и фазовая проницаемость коллекторов. Нефть, газ и вода в коллекторах.
- •80. Породы и минералы верхней мантии.
- •81. Пояса метаморфических пород высоких давлений и их происхождение.
- •82. Преимущества и недостатки биостратиграфии в решении стратиграфических задач.
- •83. Признаки возрастных взаимоотношений минеральных ассоциаций.
- •2. Зарождение на поверхности жидкости.
- •3. Зарождение на готовых зародышах.
- •4. Зарождение на кристаллах ранней генерации.
- •84. Принципы и методы изотопной геохронологии.
- •85. Принципы систематики минералов.
- •86. Разрезы океанической коры и слагающие ее горные породы.
- •87. Расплавные и флюидные включения в минералах и их значение.
- •88. Региональные стратиграфичесике схемы и их соотношение с международной стратиграфической шкалой.
- •89. Систематика магматических горных пород.
- •90. Систематика разломов, механизмы образования разломов и трещин различных типов.
- •91. Складчатые структурные формы: параметры, морфологические и генетические типы.
- •92. Слой, морфологические типы слоистости. Первичные формы залегания осадочных горных пород.
- •93. Современные движения литосферных плит и методы их изучения.
- •94. Спектральные методы ядерной геофизики: принципы, задачи.
- •95. Сравнение основных положений учения о геосинклиналях и тектоники литосферных плит.
- •96. Стратиграфический кодекс: назначение, содержание, структура.
- •97. Строение океанической и континентальной коры.
- •98. Строение основных типов островных дуг. Зональность островодужного вулканизма.
- •99. Строение складчато-покровных областей.
- •100. Строение, магматизм и метаморфизм Алданского, Анабарского и Балтийского щитов.
- •1) Алданский щит
- •2) Анабарский щит
- •101. Структурное и стратиграфическое распределение месторождений нефти и газа.
- •102. Структуры и текстуры кристаллических пород как источник генетической информации.
- •103. Тектонические и геодинамические карты: принципы составления и легенды.
- •104. Технологические свойства и марки углей. Основные факторы катагенеза углей и нефтей.
- •105. Типы взаимоотношений стратифицированных образований и природа согласных и несогласных границ.
- •106. Типы границ литосферных плит.
- •107. Типы деформации. Особенности упругой и пластической деформации горных пород.
- •108. Торф и сапропель. Паралическое и лимническое торфонакопление.
- •109. Три категории стратиграфических подразделений (общие, региональные, местные), их номенклатура, иерархия, назначение.
- •2. Региональные
- •3. Местные (литостратиграфические)
- •4. Специальные стратиграфические подразделения
- •110. Упругие свойства горных пород: определяющие факторы и закономерности.
- •111. Условия формирования россыпных месторождений. Главные промышленно-важные минералы россыпей.
- •112. Фации метаморфизма. Принципы их выделения.
- •113. Физико-химические условия гидротермального рудообразования.
- •114. Цели геологического картирования и задачи основных этапов геолого-съемочных.
- •115. Электрические свойства горных пород: определяющие факторы и закономерности.
- •116. Ядерная геофизика: физические понятия и основные факты.
14. Геологические условия образования грейзеновых и скарновых месторождений вольфрама, главные рудные минералы.
Выделяются 5 типов месторождений:
1) скарновые,
2) грейзеновые,
3) плутоногенные гидротермальные,
4)вулканогенные гидротермальные,
5) россыпные.
Скарновые месторождения.
Эти месторождения вольфрама связаны с умеренно кислыми гранитоидными формациями поздних стадий геосинклинального развития. Наиболее благоприятными вмещающими породами являются терригенно-карбонатные отложения. Протяжённость рудных тел измеряется сотнями метров. Руды скарновых месторождений характеризуются комплексным составом, среди них выделяются олово-вольфрамовый, молибден-вольфрамовый и полиметаллически-вольфрамовый типы.
Глывные рудные минералы – шеелит, молибденит, молибдошеелит, касситерит.
Скарновые шеелитовые месторождения вольфрама известны в Росии в Приморье (Восток 2), Ингичке – Узбекистан; Санг-Донг – Южная корея и др. они приурочены к гранат-пироксеновым и другим известковм скарнам, которые формируются на контакте гранитойдов с карбонатными породами.
Морофология рудных залажей. Рудные тела представлены пластообразными и линзовидными залежами, гнездо-, трубо-, и жилообразными телами. Размеры их сотни метров – первые км по простиранию, от нескольких десятков метров до 800 м и более по падению при мощности от 1-2 до 50 м.
Минеральный состав руд. Главные рудные минералы: шеелит(CaWO4), иногда молибденит, второстепенные – касситерит, висмутин, магнетит, пирротин, пирит, арсенопирит, вольфрамит, халькопирит, сфалерит и галенит. Главные нерудные минералы: гранат, пироксен, плагиоклаз, кварц, второстепенные – эпидот, хлорит и карбонаты.
Связь с гранитоидным магматизмом. Скарновые месторождения вольфрама связанны с умеренно кислыми интрузиями, формировавшиеся в позднюю стадию геосинклинального этапа и в этап активизации складчатых областей и платформ. Глубина их образования от 4 до 1 км.
Грейзеновые месторождения вольфрама
Генетически связаны с кислыми и ультракислыми лейкократовыми гранитами. Месторождения имеют комплексный состав руд. Грейзеновые месторождения играют существенную роль в балансе запасов вольфрама (до 60%), но обеспечивают всего 6% добычи. Приурочены куполовидным занам пегматоидных гранитов, распостраняясь в них на 300-500 м (эндогрейзены), а также в ороговикованных породах кровли до 1200-1500 м от контакта с гранитами (экзогрейзены). Грейзеновые месторождения имеют форму штоков возникающих при массовом метасоматозе, и штокверках, реже жил, использующих протетктонические трещины. Длина грейзеново - жильных тел по простиранию от 10 до 1000 м и более, по падению 300-400 мри мощности 0,3 – 0,5 м реже до 1 м.
Вольфрамовые руды связаны главным образом с кварц-топазовыми, кварц-слюдистыми и кварцевыми грейзенами. Главные рудные минералы: вольфрамит, молибденит, касситерит, второстепенные: магнетит, висмутин, пирротин, пирит, халькопирит, сфалерит и галенит. Главные нерудные: кварц, мусковит, биотит, кислый плагиоклаз и микроклин, второстепенные: турмалин, топаз, турмалин.
15. Геосферы Земли: принципы выделения, состав, мощности и взаимодействие.
Тектоносфера – основная арена тектонических процессов, рассматривается либо в объеме литосферы, подразделяясь на земную кору и верхнюю мантию, либо в объеме литосферы и астеносферы.
Земная кора:
Океаническая. Мощность 10-15 км.
Осадочный (первый) слой. Не более 1 км в центральных частях океанов, вплоть до полного отсутствия.
Второй слой. Общая мощность 1.5 – 2 км. V продольных сейсмических волн = 4.5 – 5.5 км/с. Верхняя часть: базальты с тонкими прослоями пелагических осадков. Характерна подушечная отдельность. Нижняя часть: Параллельные дайки долеритов.
Третий слой. Полнокристаллические магматические породы – габбройды. 5 км полосчатый комплекс, состоящий из чередующихся габбро и ультрамафитов.
Континентальная. Мощность 40-45 км (до 70-ти под горно-складчатыми сооружениями).
Осадочный слой. Отсутствует на щитах, до 10 – 20 км во впадинах платформ, передовых и межгорных прогибов горных поясов. Состав: Породы преимущественно континентального и мелководно-морского типа, редко батиального (в пределах глубоких впадин). Так же развиты покровы основных эффузивов, образующие траппы. V продольных сейсмических волн – 2-5 км/с. Возраст – 1.7 млн. лет назад.
Верхний слой консолидированной коры (гранитогнейсовый). Выступает на щитах и массивах платформ и в осевых зонах складчатых образований. Состав: кристаллические сланцы, гнейсы, амфиболиты, гранитные магмы и метаморфические породы. V продольных сейсмических волн – 6.5 км/с.
Гранулит-базитовый пояс. Исходя из общих соображений и на основе роста V продольных сейсмических волн с 6.5 до 7.6 км/с, принято считать, что слой состоит и высокометаморфизованных и высокоосновных пород.
Переходного типа.
Субокеаническая кора – развита под глубоководными котловинами окраинных и внутренних морей (Черное, Средиземное, Охотское и др.), а также обнаружена в некоторых глубоких впадинах на суше (центральная часть Прикаспийской впадины). Мощность субокеанской коры 10-25 км, причем увеличена она преимущественно за счет осадочного слоя, залегающего непосредственно на нижнем слое океанской коры..
Субконтинентальная кора – характерна для островных дуг (Алеутской, Курильской, Южно-Антильской и др.) и окраин материков. По строению она близка к континентальной коре, но имеет меньшую мощность - 20-30 км. Особенностью субконтинентальной коры является нечеткая граница между слоями консолидированных пород (отсутствие гранитного слоя).
Поверхность Мохоровичича – нижняя граница земной коры, на которой происходит резкое увеличение скоростей продольных сейсмических волн с 6.7-7.6 до 7.9-8.2 км/с. Плотность вещества также возрастает скачком, предположительно, с 2.9-3 до 3.1-3.5 т/м3. Прослеживается по всему Земному шару на глубине от 7 до 70 км. Она может не совпадать с границей земной коры и мантии, вероятнее всего, являясь границей раздела слоёв различного химического состава. Сейсмическая граница не совпадает с петрохимической (из-за серпентинизации нижних слоев земной коры). Поверхность, как правило, повторяет рельеф местности.
Верхняя мантия.
Литосферная мантия. 10-40 – 80-200 км.
Астеносферная мантия – ослабленный или пластичный слой, с пониженной, по сравнению с литосферой, вязкостью. 80-200 – 400 км. Пиролит – средний первичный состав мантии, близкий к шпинелевому лерцолиту или к гипотетической смеси перидотита и базальта.
Переходная зона (слой Галицина) – переход одних минеральных видов в другие, с более плотной упаковкой. Ol -> шпинель, Px -> гранат. 400 – 670 км.
Нижняя мантия – составная часть мантии Земли, распространяющаяся от глубин 670 (граница с верхней мантией) до 2900 км. Расчетное давление в нижней мантии составляет 24-136 ГПа и вещество нижней мантии недоступно для прямого изучения Основными минеральными фазами нижней мантии считаются (Mg, Fe)O - феррипериклаз или магнезиовюстит, составляющий около 20% её состава и (Mg, Fe)SiO3 со структурой перовскита, составляющий 70%.
Внешнее ядро 3емли – 2900-5100км – не пропускает поперечных сейсмических волн, что интерпретируется как жидкое агрегатное состояние, Vпрод= 8.1-10.7 км/с. Масса внешнего ядра 1,835*1024 кг. Плотность внешнего ядра 9,92 - 12,14 г/см3. Предполагается, что во внешнем ядре происходит интенсивная турбулентная конвекция, которая вызывает магнитное поле Земли. Изменения структуры этой конвекции приводят к миграции полюсов, магнитным инверсиям и тд.
Внутренне ядро – 5100-6371 км – самая глубокая геосфера Земли. Находится в твердом состоянии. Время начала кристаллизации внутреннего ядра оценивается в 2 миллиард лет тому назад. Состав ядра (по разным источникам): Si 6-7%, Fe 80-85%, Ni 4-5%, S 1.9-2.3%, O 0-4%, а так же незначительное содержание Co, Cr, Mn, P.
