
- •Лекции по гис Введение. История
- •Гис среди информационных технологий Связанные технологии
- •Автоматизированные системы научных исследований (асни)
- •Системы автоматизированного проектирования (сапр)
- •Автоматизированные справочно-информационные системы
- •Моделирование в гис
- •Применение экспертных систем в гис
- •Отличительные характеристики класса гис
- •Виды гис
- •Инструменты составления диаграмм и картирования
- •Настольные системы
- •Полнофункциональные системы
- •Корпоративные системы
- •Перспективы
- •Архитектура гис Составные части гис
- •Задачи гис
- •Модели данных гис
- •Базовые модели данных, используемые в гис Инфологическая модель
- •Иерархическая модель
- •Реляционная модель
- •Особенности организации данных в гис
- •Координатные данные
- •Координатные данные
- •Точечные объекты
- •Линейные объекты
- •Взаимосвязи между координатными данными
- •Атрибутивные данные
- •Графическая среда гис Атрибутивное описание
- •Вопросы точности координатных и атрибутивных данных
- •Векторные и растровые модели
- •Векторная модель
- •Топологическая модель
- •Растровые модели
- •Сканировано
- •Оверлейные структуры
- •Трехмерные модели
- •Технология моделирования в гис Основные виды моделирования
- •Методологические основы иоделирования в гис
- •Особенности моделирования в гис
- •Операции преобразования форматов и представлений данных
- •Графическая среда гис
- •Организация пространственных данных
- •Цифровые модели местности
- •Метод построения цмм на основе обобщения
- •Метод построения цмм на основе агрегации
- •Характеристики цифровых моделей
- •Логическая и физическая структура цмм
- •Свойства цмм
- •Виды моделирования
- •Особенности формирования цмр
- •Методы фотограмметрического проектирования цм
- •Модели данных
- •Реализация метода фотограмметрического проектирования
- •Внутреннее устройство гис
- •Определение концепции системы
- •Решение технологических проблем
- •Применение гис в различных областях деятельности
- •Интерактивные карты в Интернет
- •Гис для задач городского хозяйства
- •Автоматизированная информационная система земельного кадастра
- •Гис для решения экономических задач
- •Современный рынок гис
- •Специализированная система MapInfo
- •Инструментальная система Arc/Info
- •Программный продукт ArcView
- •Векторный редактор GeoDraw
- •Гис конечного пользователя GeoGraph (ГеоГраф) для Windows
- •Основы геокодирования Геокод
- •Координатные данные
- •Картографические проекции
- •Классификация проекций по характеру и размеру искажений
- •Классификация проекций по способу проецирования
- •Конические проекции (konical projection).
- •Поликонические проекции (policonic projection)
- •Видоизмененная простая поликоническая проекция (продолжение надо)
- •Цилиндрические проекции (cylindrical projection)
- •Азимутальные проекции (azimuthal projection)
- •Проекция Гаусса-Крюгера
- •Номенклатура и разграфка топографических карт
- •Системы координат Геодезические системы координат Эллипсоидальная система координат
- •Декартовы системы координат
- •Сферическая система координат
- •Геодезическая система координат
- •Геоцентрическая система координат
- •Эллипсоидальная система координат
- •Основы систем глобального позиционирования История
- •Принципы работы системы gps
- •Состав системы gps
- •Дифференциальный режим gps
- •Глобальная система определения координат глонасс Истории глонасс
- •Основные принципы работы системы глонасс
- •Состав системы глонасс
- •Перспективы глонас
- •Сравнительные характеристики систем глонасс и gps
- •Системы времени Динамическое время
- •Атомное время
- •Астрономическое время, его связь с атомным временем
- •Время, реализуемое спутниковой системой
- •Приложения Определния гис
- •Система Navstar
- •Система глонасс
Перспективы глонас
Использование СНРС в целях навигации особенно эффективно. Одним из важных вопросов для разработчиков является создание приемоиндикаторов для СРНС, ему уделено большое внимание в последнее десятилетие. Среди основных проблем, стоящих перед разработчиками приемоиндикаторов СРНС, в настоящее время выделяются следующие:
Широкое использование в приемоиндикаторах GPS алгоритмов оптимальной фильтрации, а также новых технологий, что позволит существенно повысить их эффективность и улучшить тактико-технические характеристики, а также позволит решать принципиально новые задачи (например, такие, как определение пространственной ориентации летательного аппарата, автоматический заход на посадку до касания, автоматизированную дозаправку топливом в полете, полеты в плотных боевых порядках и др.).
Повышение достоверности навигационных определений по СРНС. Эта проблема решается двумя главными путями:
обеспечение целостности СРНС, т.е. исключение использования неисправных спутников. Для решения данной задачи предполагается запуск 34 геостационарных спутников, расположенных в плоскости экватора (это обеспечивает охват большей части Земли), с одновременной организацией специального канала GIC (Greatest Integrated Channel) для передачи информации о целостности. В приемоиндикаторе она может решаться автономно (технология RA1M – Receiver Autonomic Integrated Monitoring) и с использованием дифференциальных методов;
повышение помехоустойчивости приемоиндикаторов, в том числе в условиях воздействия преднамеренных помех. Этот путь включает: улучшение алгоритмов обработки сигналов, обеспечивающих снижение порогового отношения сигнал/шум, пространственно-временную обработку сигналов и комплексирование СРНС с другими системами (объединение ИНС и приемоиндикаторов CPНС NAVSTAR в единые бортовые системы для обеспечения максимальной точности, надежности и непрерывности выдачи пилогажно-навигационных параметров, а также для высокочастотного (100-600 Гц) ввода данных в автопилоты при относительно низких частотах выходов GPS (1-10 Гц)).
Повышение точности навигационных определений до предельно малых значений. Эта проблема решается прежде всего использованием дифференциальных и относительных методов навигации (технология DGPS – Differential GPS), в значительной степени обеспечивающих компенсацию общих для всех потребителей систематических ошибок. Основное направление повышения точности связано с использованием, наряду с информацией, заключенной в огибающей принимаемого сигнала, фазовой информации, содержащейся в его высокочастотном (ВЧ) заполнении. При этом главная возникающая трудность состоит в разрешении неоднозначности измерений.
Обеспечение таких потребительских свойств приемоиндикаторов, как компактность, дешевизна аппаратуры и т.д. Среди множества путей решения и их важных проблем одноэтапный алгоритм, использование группирования отсчетов, позволяющие сократить требования к процессору и др.
В настоящее время на базе системы ГЛОНАСС предполагается создание Единой глобальной системы координатно-временного обеспечения (ЕС КВО). Кроме спутниковой системы, ЕС КВО включает:
Государственную систему Единого времени с эталонной базой страны;
Государственную систему и службу определения параметров вращения Земли;
систему наземной и заатмосферной оптической астрометрии;
космическую геодезическую систему и др.
Среди основных направлений развития можно выделить повышения точности навигационных определений за счет создания глобальной системы отсчета, использующей самоопределяющиеся навигационно-геодезические спутники без привлечения измерений с поверхности Земли и решение вопроса о возможности системы обеспечивать предупреждение пользователей о тех моментах времени, когда система не должна использоваться для навигационных определений.
Возможным решением проблемы является интеграция двух спутниковых радионавигационных систем - ГЛОНАСС и GPS. Можно выделить четыре основных направления модернизации СРНС ГЛОНАСС:
улучшение совместимости с другими радиотехническими системами;
повышение точности навигационных определений и улучшение сервиса, предоставляемого пользователям;
повышение надежности и срока службы бортовой аппаратуры спутников и улучшение целостности системы;
развитие дифференциальной подсистемы.
Целый ряд предпосылок существенно облегчает интеграцию двух систем, в частности, приводя лишь к незначительному усложнению и удорожанию комбинированных приемников ГЛОНACC-GPS. К таким предпосылкам можно отнести:
схожесть принципов синхронизации и измерения навигационных параметров;
малое различие в используемых системах координат;
близкий частотный диапазон;
общность принципов баллистического построения;
готовность правительств России и США предоставить системы для использования различными потребителями мирового сообщества.
Для обеспечения работы в дифференциальном режиме создаются подсистемы CPНС, которые подразделяются на широкозонные, региональные и локальные. В России наиболее активно развивается последний тип дифференциальных подсистем.
К настоящему времени определились три основных класса локальных дифференциальных подсистем (ЛДПС) СРНС:
морские, для обеспечения мореплавания в проливных зонах, узкостях и акваториях портов и гаваней в соответствии с требованиями Международной морской организации;
авиационные, для обеспечения захода на посадку и посадки воздушных судов по категориям Международной организации гражданской авиации;
локальные, для геодезических, землемерных и других специальных работ.
Распоряжением Президента РФ от 18.02.99 г. поручено Правительству РФ принять меры по безусловному сохранению и развитию КНС ГЛОНАСС и увеличению количества пользователей системы. Во исполнение этого распоряжения Правительство РФ в 22.03.99 г. приняло постановление, в котором определена ответственность федеральных органов исполнительной власти за поддержание и развитие КНС ГЛОНАСС и представлен "План первоочередных мероприятий по сохранению и развитию КНС ГЛОНАСС". В соответствии с этим документом разработана "Программа поддержания и развития КНС ГЛОНАСС на период до 2003 года", в которой предусматриваются мероприятия по безусловному сохранению КНС ГЛОНАСС, а так же ускоренное оснащение отечественного парка пользователей, работающих одновременно по сигналам от двух систем: ГЛОНАСС и GPS. Программа развития космической навигации России базируется наследующих принципах:
Модернизация КНС осуществляется поэтапно с учетом реальных возможностей промышленности и бюджетного финансирования;
Государство гарантирует международному сообществу поддержание КНС с требуемыми характеристиками на период до 2010 г.;
Разработка и эксплуатация системы учитывает возможность сотрудничества с другими странами в части координации использования КНС. внедрения передовых технологий, элементной базы;
Навигационный сигнал КНС ГЛОНАСС сертифицирован на соответствие международным стандартам;
Точностные характеристики КНС (СКО) в пределах 1-10 м обеспечиваются с применением дифференциального режима измерений, свыше 10 м в режиме прямой навигации;
Выполнение требований по целостности и оперативному оповещению потребителей о состоянии системы осуществляется с помощью оперативного канала мониторинга целостности системы.
Долговременная программа развития КНС реализовывается по следующим укрупненным этапам.
Этап 1 (до 2003 г.).Поддержание КНС ГЛОНАСС на минимально допустимом уровне запусками КА «Глонасс», модернизация контура информационного обмена наземного комплекса управления, расширенное оснащение потребителей аппаратурой, работающей по сигналам двух систем: ГЛОНАСС и GPS. Разработка и создание КА "Глонасс-М" .
Этап 2 (до 2005г.).Развертывание на базе КА "Глонасс-М" рабочей орбитальной группировки до 18 КА, переход в новый частотный диапазон навигационного сигнала. Отработка технологии эфемеридно-временного обеспечения с использованием межспутниковых измерений. Расширение номенклатуры и количества потребителей, работающих по сигналам КНС ГЛОНАСС и OPS. Разработка и создание маломассогабаритного КА "Глоиасс-К".
Этап 3 (до 2010 г.).Развертывание штатной орбитальной группировки на базе маломассогабаритного КА "Глонасс-К". Расширение использования межспутниковой радиолинии для решения задач автономного эфемеридно- временного обеспечения, оперативного управления и контроля КА, обеспечения целостности. Создание наземной сети станций мониторинга КНС ГЛОНАСС и функциональных дополнений. Оснащение парка потребителей НАП, работающей по сигналам ГЛОНАСС, GPS, Galileo.