
- •Лекции по гис Введение. История
- •Гис среди информационных технологий Связанные технологии
- •Автоматизированные системы научных исследований (асни)
- •Системы автоматизированного проектирования (сапр)
- •Автоматизированные справочно-информационные системы
- •Моделирование в гис
- •Применение экспертных систем в гис
- •Отличительные характеристики класса гис
- •Виды гис
- •Инструменты составления диаграмм и картирования
- •Настольные системы
- •Полнофункциональные системы
- •Корпоративные системы
- •Перспективы
- •Архитектура гис Составные части гис
- •Задачи гис
- •Модели данных гис
- •Базовые модели данных, используемые в гис Инфологическая модель
- •Иерархическая модель
- •Реляционная модель
- •Особенности организации данных в гис
- •Координатные данные
- •Координатные данные
- •Точечные объекты
- •Линейные объекты
- •Взаимосвязи между координатными данными
- •Атрибутивные данные
- •Графическая среда гис Атрибутивное описание
- •Вопросы точности координатных и атрибутивных данных
- •Векторные и растровые модели
- •Векторная модель
- •Топологическая модель
- •Растровые модели
- •Сканировано
- •Оверлейные структуры
- •Трехмерные модели
- •Технология моделирования в гис Основные виды моделирования
- •Методологические основы иоделирования в гис
- •Особенности моделирования в гис
- •Операции преобразования форматов и представлений данных
- •Графическая среда гис
- •Организация пространственных данных
- •Цифровые модели местности
- •Метод построения цмм на основе обобщения
- •Метод построения цмм на основе агрегации
- •Характеристики цифровых моделей
- •Логическая и физическая структура цмм
- •Свойства цмм
- •Виды моделирования
- •Особенности формирования цмр
- •Методы фотограмметрического проектирования цм
- •Модели данных
- •Реализация метода фотограмметрического проектирования
- •Внутреннее устройство гис
- •Определение концепции системы
- •Решение технологических проблем
- •Применение гис в различных областях деятельности
- •Интерактивные карты в Интернет
- •Гис для задач городского хозяйства
- •Автоматизированная информационная система земельного кадастра
- •Гис для решения экономических задач
- •Современный рынок гис
- •Специализированная система MapInfo
- •Инструментальная система Arc/Info
- •Программный продукт ArcView
- •Векторный редактор GeoDraw
- •Гис конечного пользователя GeoGraph (ГеоГраф) для Windows
- •Основы геокодирования Геокод
- •Координатные данные
- •Картографические проекции
- •Классификация проекций по характеру и размеру искажений
- •Классификация проекций по способу проецирования
- •Конические проекции (konical projection).
- •Поликонические проекции (policonic projection)
- •Видоизмененная простая поликоническая проекция (продолжение надо)
- •Цилиндрические проекции (cylindrical projection)
- •Азимутальные проекции (azimuthal projection)
- •Проекция Гаусса-Крюгера
- •Номенклатура и разграфка топографических карт
- •Системы координат Геодезические системы координат Эллипсоидальная система координат
- •Декартовы системы координат
- •Сферическая система координат
- •Геодезическая система координат
- •Геоцентрическая система координат
- •Эллипсоидальная система координат
- •Основы систем глобального позиционирования История
- •Принципы работы системы gps
- •Состав системы gps
- •Дифференциальный режим gps
- •Глобальная система определения координат глонасс Истории глонасс
- •Основные принципы работы системы глонасс
- •Состав системы глонасс
- •Перспективы глонас
- •Сравнительные характеристики систем глонасс и gps
- •Системы времени Динамическое время
- •Атомное время
- •Астрономическое время, его связь с атомным временем
- •Время, реализуемое спутниковой системой
- •Приложения Определния гис
- •Система Navstar
- •Система глонасс
Основные принципы работы системы глонасс
Спутники системы ГЛОНАСС непрерывно излучают навигационные сигналы двух типов: навигационный сигнал стандартной точности (СТ) в диапазоне L1 (1,6 ГГц) и навигационный сигнал высокой точности (ВТ) в диапазонах L1 и L2 (1,2 ГГц). Информация, предоставляемая навигационным сигналом СТ, доступна всем потребителям на постоянной и глобальной основе и обеспечивает, при использовании приемников ГЛОНАСС возможность определения: горизонтальных координат с точностью 50-70 м (вероятность 99,7%); вертикальных координат с точностью 70 м (вероятность 99,7%); составляющих вектора скорости с точностью 15 см/с (вероятность 99,7%); точного времени с точностью 0,7 мкс (вероятность 99,7 %).
Эти точности можно значительно улучшить, если использовать дифференциальный метод навигации и дополнительные специальные методы измерений. Сигнал ВТ предназначен, для потребителей МО РФ.
Для определения пространственных координат и точного времени требуется принять и обработать навигационные сигналы не менее чем от 4-х спутников ГЛОНАСС. При приеме навигационных радиосигналов ГЛОНАСС приемник, измеряет дальности до видимых спутников и измеряет скорости их движения. Одновременно с проведением измерений в приемнике выполняется автоматическая обработка содержащихся в каждом навигационном радиосигнале меток времени и цифровой информации. Цифровая информация описывает положение данного спутника в пространстве и времени (эфемериды) относительно единой для системы шкалы времени и в геоцентрической связанной декартовой системе координат. Так же, цифровая информация описывает положение других спутников системы (альманах) в виде кеплеровских элементов их орбит и содержит некоторые другие параметры. В результате решения определяются три координаты местоположения приемника, скорость его движения и осуществляется привязка шкалы времени приемника к высокоточной шкале Координированного всемирного времени (UTC).
Как и в GPS, радиосигналы верхнего диапазона частот спутников ГЛОНАСС состоят из двух сдвинутых на 90 градусов фазоманипулированных сигналов открытого дальномерного СТ и дальномерного ВТ. Узкополосный сигнал открытого дальномерного кода модулируется также служебной навигационной информацией. В настоящее время сигналы нижнего диапазона предназначены только для передачи высокоточного кода, в перспективе предполагается, что в нижнем диапазоне частот будут излучаться и сигналы открытого дальномерного кода, что позволит всем категориям пользователей осуществлять ионосферную коррекцию.
Служебная информация накладывается на узкополосный дальномерный сигнал путем инвертирования открытого дальномерного кода. Длина строки служебной информации равна 2 с.: первые 0,3 с. предназначены для метки времени, остальные 1,7с предназначены для передачи 85 двоичных символов. Полный кадр навигационной информации состоит из 15 строк (30 с.). Пять кадров навигационной информации объединяются в суперкадр. В составе каждого кадра передается полный объем цифровой информации, относящейся к данному спутнику и часть альманаха системы ГЛОНАСС. Альманах системы полностью передается одним суперкадром. Оперативная информация кадра по каждому навигационному спутнику содержит: признак достоверности информации в кадре; время начала кадра; эфемеридную информацию – координаты и скорости спутников в Гринвичской прямоугольной системе координат на момент времени t0; частотно-временные поправки на момент времени t0 в виде относительной поправки к несущей частоте спутников и поправки к шкале времени спутн6иков; время to (кратно 30 мин. от начала суток), к которому привязана эфемеридная информация и частотновременные поправки.
Альманах системы содержит: время, к которому относится альманах; параметры орбиты, номер пары несущих частот и поправку к шкале времени для каждого спутника; поправку к шкале времени системы ГЛОНАСС относительно шкалы времени страны (единой системы времени).
В ГЛОНАСС не предполагается введение селективного доступа. Одновременно, за счет частотного разделения каналов в ГЛОНАСС обеспечивается лучшая, по сравнению с GPS, точность. Согласно статистики, в годы минимальной солнечной активности в ГЛОНАСС по 6 спутникам по открытому дальномерному коду среднее квадратичное отклонение ошибок определения широты и долготы составляет 20-28 м, а высоты 40-52 м, что в 2,5 раз меньше, чем для GPS при тех же условиях.