Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по ГИС.doc
Скачиваний:
2
Добавлен:
01.04.2025
Размер:
2.66 Mб
Скачать

Системы координат Геодезические системы координат Эллипсоидальная система координат

Геодезические задачи решают на плоскости, если размеры площади невелики. Если исследуемая часть поверхности занимает несколько градусов широты или долготы, то необходимо учитывать и кривизну поверхности. В этом случае часто подходит и шар. Для решения глобальных задач, в том числе и задач по космической геодезии в качестве тела отсчёта берут эллипсоид вращения. В частности на эллипсоиде решают следующие задачи:

Уточнение формы и размеров общего земного эллипсоида (ОЗЭ).

-Перенос направлений и расстояний с физической поверхности на эллипсоид.

-Определение координат точек на поверхности референц-эллипсоида.

-Определение расстояний между точками с заданными координатами.

-Уточнение координат по мере уточнения элементов эллипсоида.

Декартовы системы координат

Введём две прямоугольные системы координат: локальную и глобальную.

Начало системы отсчета (точка Р) для локальной прямоугольной системы координат выберем в точке наблюдения, лежащей на поверхности эллипсоида. Ось РХ направим на Север, ось РУ на Восток, а ось PZ по нормали к поверхности эллипсоида вниз (по внутренней нормали). В этой системе координат “горизонтальная” плоскость ХРУ не совпадает с плоскостью астрономического горизонта.

Глобальную декартову геодезическую систему координат Oxyz строят так. Начало отсчета совмещают с центром ОЗЭ (не путать с центром масс Земли!), плоскость xOy - c плоскостью экватора. Ось Ox совмещают с линией пересечения плоскости нулевого меридиана и плоскости экватора. Ось Oy пересекает экватор в точке с долготой 90 . Ось Oz совпадает с осью вращения ОЗЭ. Эта ось не обязательно совпадает с осью вращения Земли. Для трехосного ОЗЭ начало координат берут в центре масс Земли, а оси – совпадающими с главными осями инерции. В этом случае плоскость xOy , вообще говоря, не будет лежать в плоскости экватора.

Сферическая система координат

Телом отсчета для сферической системы координат является сфера с радиусом R. Начало этой системы координат совмещают с центром сферы. Координатами являются геоцентрическая широта Ф, долгота и радиус-вектор r. Широтой называется угол между радиусом-вектором и плоскостью экватора. Долгота есть угол между плоскостью, проходящей через заданную точку и осью вращения (плоскость меридиана) и плоскостью меридиана, принятого в качестве нулевого. Связь между сферической системой и глобальной декартовой определяется формулами

(1)

В том случае, когда широта определяется как угол между плоскостью экватора и отвесной линией, сферическая система координат называется астрономической. Широта и долгота, определённые в этой системе мы будем обозначать через .

Геодезическая система координат

С геодезической системой координат B, L ,H связывают понятия геодезической широты, долготы и высоты. Геодезическая широта В есть угол, под которым пересекается нормаль к поверхности эллипсоида с плоскостью экватора. Долгота L - двугранный угол между плоскостью нулевого меридиана и плоскостью меридиана, проходящего через заданную точку.

Геодезические широта и долгота отличаются от соответствующих астрономических координат, связанных с отвесной линией, так как отвесная линия не совпадает с нормалью к эллипсоиду. Отклонение отвесной линии можно спроецировать на две плоскости: плоскость меридиана и плоскость первого вертикала. Нетрудно понять, что обе эти составляющие можно определить через разности между астрономическими и геодезическими координатами

. (2)

Отклонения отвесной линии составляют, как правило, первые несколько секунд дуги.