
- •Лекции по гис Введение. История
- •Гис среди информационных технологий Связанные технологии
- •Автоматизированные системы научных исследований (асни)
- •Системы автоматизированного проектирования (сапр)
- •Автоматизированные справочно-информационные системы
- •Моделирование в гис
- •Применение экспертных систем в гис
- •Отличительные характеристики класса гис
- •Виды гис
- •Инструменты составления диаграмм и картирования
- •Настольные системы
- •Полнофункциональные системы
- •Корпоративные системы
- •Перспективы
- •Архитектура гис Составные части гис
- •Задачи гис
- •Модели данных гис
- •Базовые модели данных, используемые в гис Инфологическая модель
- •Иерархическая модель
- •Реляционная модель
- •Особенности организации данных в гис
- •Координатные данные
- •Координатные данные
- •Точечные объекты
- •Линейные объекты
- •Взаимосвязи между координатными данными
- •Атрибутивные данные
- •Графическая среда гис Атрибутивное описание
- •Вопросы точности координатных и атрибутивных данных
- •Векторные и растровые модели
- •Векторная модель
- •Топологическая модель
- •Растровые модели
- •Сканировано
- •Оверлейные структуры
- •Трехмерные модели
- •Технология моделирования в гис Основные виды моделирования
- •Методологические основы иоделирования в гис
- •Особенности моделирования в гис
- •Операции преобразования форматов и представлений данных
- •Графическая среда гис
- •Организация пространственных данных
- •Цифровые модели местности
- •Метод построения цмм на основе обобщения
- •Метод построения цмм на основе агрегации
- •Характеристики цифровых моделей
- •Логическая и физическая структура цмм
- •Свойства цмм
- •Виды моделирования
- •Особенности формирования цмр
- •Методы фотограмметрического проектирования цм
- •Модели данных
- •Реализация метода фотограмметрического проектирования
- •Внутреннее устройство гис
- •Определение концепции системы
- •Решение технологических проблем
- •Применение гис в различных областях деятельности
- •Интерактивные карты в Интернет
- •Гис для задач городского хозяйства
- •Автоматизированная информационная система земельного кадастра
- •Гис для решения экономических задач
- •Современный рынок гис
- •Специализированная система MapInfo
- •Инструментальная система Arc/Info
- •Программный продукт ArcView
- •Векторный редактор GeoDraw
- •Гис конечного пользователя GeoGraph (ГеоГраф) для Windows
- •Основы геокодирования Геокод
- •Координатные данные
- •Картографические проекции
- •Классификация проекций по характеру и размеру искажений
- •Классификация проекций по способу проецирования
- •Конические проекции (konical projection).
- •Поликонические проекции (policonic projection)
- •Видоизмененная простая поликоническая проекция (продолжение надо)
- •Цилиндрические проекции (cylindrical projection)
- •Азимутальные проекции (azimuthal projection)
- •Проекция Гаусса-Крюгера
- •Номенклатура и разграфка топографических карт
- •Системы координат Геодезические системы координат Эллипсоидальная система координат
- •Декартовы системы координат
- •Сферическая система координат
- •Геодезическая система координат
- •Геоцентрическая система координат
- •Эллипсоидальная система координат
- •Основы систем глобального позиционирования История
- •Принципы работы системы gps
- •Состав системы gps
- •Дифференциальный режим gps
- •Глобальная система определения координат глонасс Истории глонасс
- •Основные принципы работы системы глонасс
- •Состав системы глонасс
- •Перспективы глонас
- •Сравнительные характеристики систем глонасс и gps
- •Системы времени Динамическое время
- •Атомное время
- •Астрономическое время, его связь с атомным временем
- •Время, реализуемое спутниковой системой
- •Приложения Определния гис
- •Система Navstar
- •Система глонасс
Особенности формирования цмр
Термин цифровая определяет принадлежность модели к классу дискретных. Применительно к ЦММ это порождает проблему адекватного отображения дискретной моделью соответствующего рельефа поверхности, представляющего собой аналоговую модель. В свою очередь, эта проблема связана с методами сбора информации для организации цифровой модели рельефа (ЦМР).
Сбор данных для ЦМР осуществляется обычно путем цифрового преобразования горизонталей или расчета фотограмметрических измерений. В настоящее время стоимость цифрового преобразования карт ручными или автоматизированными методами приблизительно одинакова при существенно разных временных затратах. Например, затраты времени на обработку листа карты масштаба 1:25000 размером 50x70 см характеризуются следующими цифрами:
ручное преобразование - 50 - 70 ч;
автоматизированное сканирование (на ЭВМ VAX) - 0,5 ч;
векторизация -8 ч;
редактирование (на интерактивной рабочей станции) - 8 - 20 ч.
Большие трудозатраты являются результатом неэффективной реализации концепции цифрового моделирования, а не недостатком самой концепции. Для автоматического сканирования необходимо более совершенное программное обеспечение, которое позволяло бы правильно реконструировать горизонтали, а также сопровождать горизонтали отметками. Сбор данных обычно производится по профилям.
При фотограмметрических технологиях сбора информации разработаны методы, позволяющие определять плотность выборки для обеспечения требований точности. Измерения для получения большей точности выполняются по заданным точкам сетки рельефа в режиме «остановка-движение» на аналитических стереоприборах.
Измерения в динамическом режиме приводят к увеличению среднеквадратических ошибок. Многие программы построения ЦММ для повышения надежности отображения местности включают технологии определения характерных линий рельефа.
Выбор структурных линий и определение их необходимого числа - это экспертная задача, требующая интеллектуального решения, определенной квалификации и представляющая определенные трудности для оператора. Измерение этих линий происходит с меньшей точностью, чем измерение точек сетки, так как оператор должен контролировать движение по трем координатам.
Плотность измерения точек вдоль характерных линий принимается в 2-3 раза выше, чем точек сетки. Это увеличивает временные затраты. Объем измерений и затраты времени на измерение структурных линий обычно больше, чем на измерение отметок точек сетки. Затраты времени зависят от квалификации оператора и от того, было ли проведено предварительное опознавание характерных линий до начала измеритель ной обработки снимка под зеркальным стереоскопом. Опыт работ подтверждает необходимость измерения характерных линий рельефа для надежной интерполяции горизонталей.
Для пользователя важно знать принципы и характеристики метода интерполяции, чтобы правильно сделать выбор характерных линий рельефа и таким образом определить оптимальные входные параметры и обеспечить контроль качества собираемой информации.
Для получения адекватного описания местности следует с достаточной осторожностью применять аналитические описания модели рельефа, основанные на сглаживающих параметрах.
Всегда существует допуск вычислительной погрешности, с превышением которого обработка становится неэффективной. Интерполированные отметки не должны выходить за пределы локального минимума и максимума. Однако не во всех программах формирования ЦМР это предусматривается.
Трудности интерполяции с использованием автоматизированных методов приводят к тому, что, хотя горизонтали, получаемые при ис пользовании ЦМР, выглядят очень естественными (гладкими), они мо гут быть менее точны, чем при классической неавтоматизированной рисовке.
Поэтому перспективным следует считать развитие автоматизированных и полуавтоматизированных методов сбора данных для ЦМР на основе автоматической корреляции и сопоставления изображений, полу чаемых при помощи специальных датчиков с аэро- и космических носителей. Создание ЦМР должно совмещаться с автоматическим распознаванием образов.