
- •Лекции по гис Введение. История
- •Гис среди информационных технологий Связанные технологии
- •Автоматизированные системы научных исследований (асни)
- •Системы автоматизированного проектирования (сапр)
- •Автоматизированные справочно-информационные системы
- •Моделирование в гис
- •Применение экспертных систем в гис
- •Отличительные характеристики класса гис
- •Виды гис
- •Инструменты составления диаграмм и картирования
- •Настольные системы
- •Полнофункциональные системы
- •Корпоративные системы
- •Перспективы
- •Архитектура гис Составные части гис
- •Задачи гис
- •Модели данных гис
- •Базовые модели данных, используемые в гис Инфологическая модель
- •Иерархическая модель
- •Реляционная модель
- •Особенности организации данных в гис
- •Координатные данные
- •Координатные данные
- •Точечные объекты
- •Линейные объекты
- •Взаимосвязи между координатными данными
- •Атрибутивные данные
- •Графическая среда гис Атрибутивное описание
- •Вопросы точности координатных и атрибутивных данных
- •Векторные и растровые модели
- •Векторная модель
- •Топологическая модель
- •Растровые модели
- •Сканировано
- •Оверлейные структуры
- •Трехмерные модели
- •Технология моделирования в гис Основные виды моделирования
- •Методологические основы иоделирования в гис
- •Особенности моделирования в гис
- •Операции преобразования форматов и представлений данных
- •Графическая среда гис
- •Организация пространственных данных
- •Цифровые модели местности
- •Метод построения цмм на основе обобщения
- •Метод построения цмм на основе агрегации
- •Характеристики цифровых моделей
- •Логическая и физическая структура цмм
- •Свойства цмм
- •Виды моделирования
- •Особенности формирования цмр
- •Методы фотограмметрического проектирования цм
- •Модели данных
- •Реализация метода фотограмметрического проектирования
- •Внутреннее устройство гис
- •Определение концепции системы
- •Решение технологических проблем
- •Применение гис в различных областях деятельности
- •Интерактивные карты в Интернет
- •Гис для задач городского хозяйства
- •Автоматизированная информационная система земельного кадастра
- •Гис для решения экономических задач
- •Современный рынок гис
- •Специализированная система MapInfo
- •Инструментальная система Arc/Info
- •Программный продукт ArcView
- •Векторный редактор GeoDraw
- •Гис конечного пользователя GeoGraph (ГеоГраф) для Windows
- •Основы геокодирования Геокод
- •Координатные данные
- •Картографические проекции
- •Классификация проекций по характеру и размеру искажений
- •Классификация проекций по способу проецирования
- •Конические проекции (konical projection).
- •Поликонические проекции (policonic projection)
- •Видоизмененная простая поликоническая проекция (продолжение надо)
- •Цилиндрические проекции (cylindrical projection)
- •Азимутальные проекции (azimuthal projection)
- •Проекция Гаусса-Крюгера
- •Номенклатура и разграфка топографических карт
- •Системы координат Геодезические системы координат Эллипсоидальная система координат
- •Декартовы системы координат
- •Сферическая система координат
- •Геодезическая система координат
- •Геоцентрическая система координат
- •Эллипсоидальная система координат
- •Основы систем глобального позиционирования История
- •Принципы работы системы gps
- •Состав системы gps
- •Дифференциальный режим gps
- •Глобальная система определения координат глонасс Истории глонасс
- •Основные принципы работы системы глонасс
- •Состав системы глонасс
- •Перспективы глонас
- •Сравнительные характеристики систем глонасс и gps
- •Системы времени Динамическое время
- •Атомное время
- •Астрономическое время, его связь с атомным временем
- •Время, реализуемое спутниковой системой
- •Приложения Определния гис
- •Система Navstar
- •Система глонасс
Свойства цмм
Целостность. При обработке данных в БД недостаточно, чтобы ЦММ просто отражала объекты реального мира. Важно, чтобы такое отражение было однозначным и непротиворечивым. В этом случае говорят, что ЦММ удовлетворяет условию целостности (integrity). Целостность ЦММ имеет два значения: как объекта БД и как модели реально го объекта.
Целостность ЦММ как объекта базы данных определяется требованиями СУБД и соответствует понятию целостности ин формации в БД. Для достижения целостности исходная информация должна быть типизирована и струтурирована. Такая целостность позволяет осуществлять работу с ЦММ как с элементом базы данных, направлять к ней запросы, проводить фильтрацию, получать справки или отчеты.
Целостность ЦММ как модели реального объекта определяется требованием получения проекта карты или картографической композиции средствами ГИС. Для достижения такой целостности информация должна быть полной, актуальной и отвечать требованиям точности при получении данного проекта карты. Например, информация должна включать не только собранные на местности данные, но и библиотеки условных знаков, которые хранятся в БД независимо от ЦММ. В данном случае целостность ЦММ как модели объекта обусловливается полнотой информации БД.
Дискретность. ЦММ относится к классу дискретных моделей. Это обусловлено необходимостью хранения ЦММ как объекта дискретной базы данных. Геометрическая часть ЦММ может содержать отдельные точки поверхности объектов. ЦММ позволяет строить непрерывные линии и поверхности, т.е. получать аналоговые модели (аналоговые карты), за счет совместного использования метрической и семантической информации.
Многофункциональность. ЦММ должны быть легко адаптируемыми для решения различных задач. Графическое отображение ЦММ не должно зависеть от средств воспроизведения графической информации.
Для многократного использования ЦММ нужны дополнительные данные: описатели, классификаторы, нормативные данные, правила применения и т.д. Обычно их называют метаданными. Они хранятся в словаре данных (data dictionary).
Виды моделирования
Рассмотрим работу с цифровыми моделями в соответствии с тремя системными уровнями: сбор и первичная обработка информации, хранение и обновление, представление (отображение).
При сборе информации для построения цифровых моделей используются автоматизированные средства регистрации и автоматизированных технологий. Источниками информации служат карты, таблицы, спецификации, геодезические координаты точек и объектов местности, координаты точек на аэрокосмических и наземных фотоснимках, данные, получаемые по телевизионным и/или радиолокационным снимкам, телеметрические данные, информация, считываемая с планов и карт, данные о допусках и погрешностях, дополнительная информация текстового характера.
После сбора первичных данных на уровне хранения и обновления информации осуществляются симплификация, унификация, коррекция информации, содержащей ошибки и дополнения к ней. Таким образом, формируется унифицированная совокупность данных, одинаковая для различных средств и технологий сбора, позволяющая в дальнейшем применять ее для получения чертежей и планов не одного, а нескольких смежных масштабов.
На уровне представления ЦММ отображается цифровая информация в виде, удобном для пользования. ЦММ может генерироваться из разных моделей. Визуальное представление ЦММ реализуется на современных устройствах вывода информации.
Технологически можно выделить следующие виды моделирования: семантическое, инвариантное, геометрическое, эвристическое, ин формационное. Они проявляются на разных системных уровнях обработки информации в разной степени.
Семантическое моделирование взаимосвязано с задачами кодирования и лингвистического обеспечения, поэтому оно в большей степени используется на уровне сбора первичной информации. Это обусловлено также большим объемом и разнообразием входной информации, сложностью ее структуры, возможным наличием ошибок.
Чем более разнородна входная информация по структуре и содержанию, чем менее она унифицирована, тем больший объем семантического моделирования применяется в подсистеме сбора.
Инвариантное моделирование основано на работе с полностью или частично унифицированными информационными элементами или структурами. Его эффективность доказана опытом применения прежде всего САПР и других АС. Этот вид моделирования предполагает использование групповых операций, чем обеспечивается повышение производительности труда по сравнению с индивидуальным моделированием.
Инвариантность создает предпосылки для широкого применения наборов программно-технологических средств независимо от конкретного вида (особенностей) моделируемого объекта. Она предусматривает использование общих свойств моделируемых объектов (свойства типов или классов) безотносительно к техническим средствам и специфическим характеристикам отдельных объектов.
Этот вид моделирования обеспечивает значительное повышение производительности обработки информации, особенно при моделировании (обработке) графических объектов.
Однако реализация такого подхода возможна лишь при наличии структурно разделенных графических моделей, нижний уровень которых инвариантен (безотносителен) к особенностям модели, а верхний содержит индивидуальные свойства моделей. Другими словами, такое моделирование требует специализированного программного и лингвистического обеспечения, учитывающего свойства моделируемых объектов и возможность их структуризации на некие графические примитивы.
Геометрическое моделирование можно рассматривать как разновидность инвариантного, оно применяется там, где требуется обработка метрических данных.
Эвристическое моделирование применяется при учете индивидуальных свойств объектов на видеоизображениях и при решении специальных нетиповых задач. В основном оно реализуется при интерактивной обработке.
Оно базируется на реализации общения пользователя с ЭВМ по сценарию, учитывающему, с одной стороны, технологические особенности программного обеспечения, с другой - особенности и опыт обработки данной категории объектов.
Информационное моделирование связано с созданием и преобразованием различных форм информации, например графической или текстовой, в вид, задаваемый пользователем. Оно эффективно толь ко при предварительной разработке интегрированной информационной основы и применении баз данных. В современных автоматизированных системах для отображения ЦММ применяют автоматизированные системы документационного обеспечения.
Следует отметить, что все виды моделирования используются на всех системных уровнях, но в разной степени.
Описание цифровой модели динамично. Оно изменяется или дополняется по мере появления новых задач, новых методов обработки и новых технических средств автоматизации проектирования.