
- •Лекции по гис Введение. История
- •Гис среди информационных технологий Связанные технологии
- •Автоматизированные системы научных исследований (асни)
- •Системы автоматизированного проектирования (сапр)
- •Автоматизированные справочно-информационные системы
- •Моделирование в гис
- •Применение экспертных систем в гис
- •Отличительные характеристики класса гис
- •Виды гис
- •Инструменты составления диаграмм и картирования
- •Настольные системы
- •Полнофункциональные системы
- •Корпоративные системы
- •Перспективы
- •Архитектура гис Составные части гис
- •Задачи гис
- •Модели данных гис
- •Базовые модели данных, используемые в гис Инфологическая модель
- •Иерархическая модель
- •Реляционная модель
- •Особенности организации данных в гис
- •Координатные данные
- •Координатные данные
- •Точечные объекты
- •Линейные объекты
- •Взаимосвязи между координатными данными
- •Атрибутивные данные
- •Графическая среда гис Атрибутивное описание
- •Вопросы точности координатных и атрибутивных данных
- •Векторные и растровые модели
- •Векторная модель
- •Топологическая модель
- •Растровые модели
- •Сканировано
- •Оверлейные структуры
- •Трехмерные модели
- •Технология моделирования в гис Основные виды моделирования
- •Методологические основы иоделирования в гис
- •Особенности моделирования в гис
- •Операции преобразования форматов и представлений данных
- •Графическая среда гис
- •Организация пространственных данных
- •Цифровые модели местности
- •Метод построения цмм на основе обобщения
- •Метод построения цмм на основе агрегации
- •Характеристики цифровых моделей
- •Логическая и физическая структура цмм
- •Свойства цмм
- •Виды моделирования
- •Особенности формирования цмр
- •Методы фотограмметрического проектирования цм
- •Модели данных
- •Реализация метода фотограмметрического проектирования
- •Внутреннее устройство гис
- •Определение концепции системы
- •Решение технологических проблем
- •Применение гис в различных областях деятельности
- •Интерактивные карты в Интернет
- •Гис для задач городского хозяйства
- •Автоматизированная информационная система земельного кадастра
- •Гис для решения экономических задач
- •Современный рынок гис
- •Специализированная система MapInfo
- •Инструментальная система Arc/Info
- •Программный продукт ArcView
- •Векторный редактор GeoDraw
- •Гис конечного пользователя GeoGraph (ГеоГраф) для Windows
- •Основы геокодирования Геокод
- •Координатные данные
- •Картографические проекции
- •Классификация проекций по характеру и размеру искажений
- •Классификация проекций по способу проецирования
- •Конические проекции (konical projection).
- •Поликонические проекции (policonic projection)
- •Видоизмененная простая поликоническая проекция (продолжение надо)
- •Цилиндрические проекции (cylindrical projection)
- •Азимутальные проекции (azimuthal projection)
- •Проекция Гаусса-Крюгера
- •Номенклатура и разграфка топографических карт
- •Системы координат Геодезические системы координат Эллипсоидальная система координат
- •Декартовы системы координат
- •Сферическая система координат
- •Геодезическая система координат
- •Геоцентрическая система координат
- •Эллипсоидальная система координат
- •Основы систем глобального позиционирования История
- •Принципы работы системы gps
- •Состав системы gps
- •Дифференциальный режим gps
- •Глобальная система определения координат глонасс Истории глонасс
- •Основные принципы работы системы глонасс
- •Состав системы глонасс
- •Перспективы глонас
- •Сравнительные характеристики систем глонасс и gps
- •Системы времени Динамическое время
- •Атомное время
- •Астрономическое время, его связь с атомным временем
- •Время, реализуемое спутниковой системой
- •Приложения Определния гис
- •Система Navstar
- •Система глонасс
Координатные данные
Географическая информация о различных территориальных объектах может быть представлена как совокупность наборов точек (населенные пункты, предприятия), линий (транспортные магистрали, реки), контуров (поля, леса) и площадей (социально - экономические зоны, данные об угодьях), которые образует набор базовых геометрических типов моделей. Они составляют класс координатных данных ГИС, являющийся обязательной характеристикой геообъектов. Будучи частью (классом) общей модели данных в ГИС, координатные данные определяют класс координатных моделей.
В ГИС применяют набор базовых геометрических типов моделей, из которых создают все остальные, более сложные. С учетом предметной области карт ограничиваются лишь описанием таких типов (структур географических данных), которые относятся к представлению топографии и к тематическому упорядочению.
В ГИС включают следующие типы координатных данных:
точка (узел, вершина);
линия незамкнутая;
контур (замкнутая линия);
полигон (ареал, район) – группы, примыкающих друг к другу замкнутых участков.
В реальных ГИС для построения объектов используют большее число координатных моделей. В некоторых системах в описание основных типов моделей включают понятие пространственная сеть, которая является развитием типа данных район. Контуры и линии часто объединяют общим термином линейные объекты.
Точечные объекты
Точками отражаются те элементы карты, которые не видны на данном масштабе. Выбор объектов, представляемых в виде точек, зависит от масштаба карты или исследования. На крупномасштабной карте точками показываются отдельные строения, а на мелкомасштабной карте – города. Особенность точечных объектов состоит в том, что они хранятся и в виде графических файлов, как и другие пространственные объекты, и в виде таблиц, как атрибуты. Последнее обусловлено тем, что координаты каждой точки описываются как два дополнительных атрибута. В силу этого информацию о наборе точек можно представить в виде развернутой таблицы или таблицы, содержащей помимо координат наборы атрибутов (идентификационные номера, тематические характеристики и т.д.) В таблицах каждая строка соответствует точке – в ней собрана вся информация о данной точке. Каждый столбец - это признак, содержащий типизированные данные: координаты или атрибуты. Каждая точка независима от всех остальных точек, представленных отдельными строками.
Линейные объекты
Линиями отображаются объекты, которые в масштабе карты не имеют площади, но имеют протяженность. Линии широко применяются и для описания сетей, для которых в отличие от точечных объектов характерно присутствие топологических признаков. Любая сеть состоит из узлов (вершин) – соединений, концов обособленных линий и звеньев (дуг) – цепей в модели базы данных.
Для каждого узла существует специальная характеристика, называемая валентностью, определяемая количеством звеньев в нем. Концы обособленных линий одновалентны. Для уличных сетей (пересечения типа "крест") наиболее характерны четырехвалентные узлы. В гидрологии чаще всего встречаются трехвалентные узлы.
Линейные объекты, как и точечные, имеют свои атрибуты, причем разные для дуг и узлов. Например, атрибутами для дуг могут быть:
направление движения, интенсивность движения, протяженность (для дорог);
количество полос, время пути вдоль звена;
напряжение в ЛЭП, высота опор (для линии электропередач);
диаметр трубы, направление движения газа (газопровод);
количество путей, уклон, ширина тоннеля, грузоподъемность и др.
Атрибутами для узла могут быть:
наличие перехода, названия пересекающихся улиц;
наличие автоматического регулирования перекрестков;
тип (ручной или автоматический) перевода стрелок;
характеристики трансформаторов ЛЭП;
мощность компрессора;
и др.
Некоторые атрибуты (например, названия пересекающихся улиц) служат для связи одного типа объектов с другими (узлы со звеньями), другие характеризуют только участки звеньев сети.
Во многих ГИС для включения дополнительных атрибутов в сеть необходимо разбиение существующих звеньев и создание новых узлов. Например, звено улицы, часть которой ремонтируется, разрывается на месте начального и конечного участка ремонта, его атрибуты присваиваются новому (двухвалентному) узлу. Другой пример: для отрезка дороги, проходящей через мост, создаются новое звено и два новых узла. Такой подход может привести к появлению недопустимо большого числа звеньев и двухвалентных узлов, поэтому он имеет ограничение, определяемое ресурсами конкретной ГИС.
Сети часто используют как системы линейной адресации. В этих случаях точки размещают в сети по данным о номере звена и о расстоянии от его начала. Это более удобно, чем использовать X, Y координаты точки из таблицы, поскольку такие данные непосредственно указывают положение точки в сети.
Данный подход определяет метод присвоения атрибутов отдельным участкам звеньев. При этом линейные объекты (здания, тоннели) хранятся в отдельных таблицах, а с сетью они увязаны путем указания но мера звена и расстояния от его начала.
Ареалы
В настоящее время в ГИС может быть представлено несколько типов ареалов: зоны в приложении к окружающей среде или природным ресурсам, социально-экономические зоны, данные об угодьях и др.
Для ареальных объектов границы могут определяться свойством или явлением, а также независимо от явления (затем перечисляются значения атрибутов). Кроме того, границы могут устанавливаться искусственно, например для микрорайонов.