
- •Механика и термодинамика Методические указания
- •Оглавление
- •Введение
- •В.1. Погрешности измерений физических величин
- •В.2. Обработка и представление результатов многократных измерений
- •Значения коэффициента Стьюдента
- •В.3. Приборная погрешность
- •В.4. Представление результатов однократных измерений
- •В.5. Оформление результатов измерений
- •В.6. Протокол
- •Министерство образования и науки Российской Федерации
- •Лабораторная работа №
- •1. Цель работы
- •2. Таблица измерительных приборов
- •В.7. Приложение к протоколу
- •Определение объема тела цилиндрической формы
- •Обработка и представление результатов прямых измерений
- •Обработка и представление результатов косвенного измерения
- •Задание к работе
- •Список литературы
- •Измерение скорости пули
- •С помощью баллистического маятника
- •Описание установки
- •Методика эксперимента, вывод формул
- •Задание к работе
- •Контрольные вопросы
- •Индивидуальные задания для членов бригады, выполняющих лабораторную работу на одной установке
- •Литература
- •Определение момента инерции маятника Обербека
- •Описание установки
- •Расчет момента инерции маятника Обербека и момента сил сопротивления
- •Зависимость момента инерции маятника от расстояния грузов до оси вращения
- •Задание к работе
- •Контрольные вопросы
- •Индивидуальные задания для членов бригады, выполняющих лабораторную работу на одной установке
- •Литература
- •Вывод формулы для косвенных измерений момента тормозящей силы
- •Вывод формулы для косвенных измерений момента инерции тела с учетом момента тормозящей силы
- •Получение формул для определения погрешностей косвенных измерений момента тормозящей силы и момента инерции тела
- •Задание к работе
- •Контрольные вопросы
- •Индивидуальные задания для членов бригады, выполняющих лабораторную работу на одной установке
- •Литература
- •Определение момента инерции тела
- •Методом колебаний
- •Цель работы – определение момента инерции маятника с применением уравнения колебаний и исследование зависимости момента инерции от расстояния до условно выбранной точки а.
- •Описание установки
- •Расчет момента инерции маятника
- •Задание к работе
- •Контрольные вопросы
- •Индивидуальные задания для членов бригады, выполняющих лабораторную работу на одной установке
- •Литература
- •Определение показателя адиабаты методом клемана и дезорма
- •Равновесные и квазиравновесные тепловые процессы
- •Квазиравновесный адиабатный процесс
- •Метод измерения показателя адиабаты
- •Экспериментальная установка
- •Задание к работе
- •Контрольные вопросы
- •Исходные данные для лаборатории, расположенной в IV корпусе нгту,
- •Лабораторная работа № 3 Определение момента инерции маятника Обербека
- •Лабораторная работа № 4 Определение момента инерции тела вращения и оценка момента сил трения
- •Механика и термодинамика Методические указания к лабораторным работам по физике
- •630092, Г. Новосибирск, пр. К. Маркса, 20
В.7. Приложение к протоколу
Как было сказано выше, протокол является формой представления результатов лабораторных измерений с их последующей математической обработкой.
Для ряда лабораторных работ требуется до выполнения измерений получить ожидаемые теоретические результаты. Это позволяет студентам, во-первых, лучше разобраться с тем кругом физических понятий и законов, которые будут изучаться в лабораторной работе, и, следовательно, осознанно проводить опыты, и, во-вторых, сравнив ожидаемые теоретические результаты с результатами, полученными в ходе эксперимента, сделать обоснованное заключение о применимости использованной теории.
Задание по теоретическому расчету студенты выполняют в процессе подготовки к лабораторной работе. Явившись на занятие, студент обязан показать преподавателю полученные теоретические результаты вместе с заготовкой протокола. Это – необходимое условие допуска к выполнению экспериментов.
Одновременно с протоколом, содержащим результаты опытов, студент сдает теоретические результаты, оформленные как приложение к протоколу.
Обычно студенческая бригада, выполняющая лабораторную работу на одной установке, состоит из 2-3 человек. Рекомендуется каждому члену бригады присвоить один из номеров 1, 2, 3, распределив фамилии студентов по алфавиту. Каждый член бригады получает индивидуальное теоретическое задание в соответствии со своим номером, содержание которого приведено в описании лабораторной работы.
Лабораторная работа № 0
Определение объема тела цилиндрической формы
Цель работы – на достаточно простом примере научиться проводить измерения физической величины, обрабатывать и представлять результаты прямых и косвенных измерений.
Объем цилиндра рассчитывается по формуле
V = π d2 h/4 , (*)
где d – диаметр основания и h – высота цилиндра.
Следовательно, объем тела цилиндрической формы можно определить из косвенного измерения, произведя прямые измерения диаметра и высоты.
Обработка и представление результатов прямых измерений
Так как у реального цилиндрического тела значения d и h, измеренных в разных местах и направлениях, могут оказаться разными, то следует произвести многократные измерения диаметра и высоты для нескольких сечений цилиндра. Если результаты многократных измерений получатся разными, то следует произвести их статистическую обработку в соответствии с п. В.2. Предстоит определить средние значения d и h, среднеквадратичные отклонения Sd и Sh, доверительные погрешности d и h (доверительную вероятность следует выбирать близкую к 100 %).
В качестве измерительного прибора в данной работе Вы будете использовать линейку или штангенциркуль. Прибор позволит Вам измерить диаметр и высоту цилиндра. Приборная погрешность δ линейки и штангенциркуля определяется ценой деления. Приступая к измерениям, Вам необходимо определить цену деления измерительного прибора.
Доверительные погрешности d и h , полученные в результате статистической обработки, следует сравнить с приборной погрешностью δ. Если, например, большим оказывается значение d , то результат многократных прямых измерений диаметра представляется в виде
d ± d ( n = ... , P = ... ) .
Если выполняется условие δ > d , то результат представляется в виде
d ± δ .
В последнем случае считается, что все имеющиеся случайные погрешности перекрываются погрешностью прибора. Именно в такой ситуации можно ограничиваться однократным измерением.