
- •«Маркетинговое планирование»
- •2. Главные факторы угрозы для человечества и для развития маркетинга.
- •3. Функциональная структура маркетинга
- •Лекция №2. Порядок разработки плана маркетинга
- •1. Порядок планирования (логика планирования) маркетинга предприятия
- •Планирование как процесс – разработка и практическое осуществление планов, определяющих будущее состояние экономической системы, путей, способов и средств достижения.
- •2. Роль и место swot-анализа в структуре предплановых задач.
- •Лекция №3 Процедура планирования маркетинга
- •5. Стратегические бизнес единицы (сбе)
- •1. Миссия организации.
- •2. Формулирование целей фирмы.
- •3. Формулирование стратегий достижения целей.
- •Цели фирмы
- •Маркетинговые цели
- •4. Методы построения маркетинговых стратегий
- •5. Стратегические бизнес единицы (сбе)
- •Лекция №4. Процедура составления маркетингового плана.
- •1. Анализ информации для разработки маркетингового плана.
- •2. Применение swot-анализа в разработке маркетингового плана.
- •3. Формирование плана конкретных действий
- •4. Разработка плана конкурентных действий и дополнительных сценариев.
- •Лекция 5 Планирование отдельных видов маркетинговой деятельности
- •1. Содержание плана маркетинговых исследований.
- •2. Содержание плана развития товара.
- •3. Содержание рекламного плана.
- •Лекция 6. Методы упорядочения плановых действий во времени.
- •1. Графические методы планирования.
- •2. Процедура составления бюджета маркетинга.
- •3. Бюджетирование деятельности предприятия
- •4. Контроль исполнения планов и их корректировка.
- •Лекция №7. Системный подход к разработке планов маркетинга и к обеспечению их выполнения.
- •3. Ревизия маркетинга.
- •4. Выводы по планированию.
- •1. Обоснование необходимости системного подхода в планировании маркетинга.
- •2. Принцип обратной связи в планировании маркетинга.
- •3. Ревизия маркетинга.
- •4. Выводы по планированию.
- •3. Контроль, аудит и самооценка на предприятии.
- •1. Укажите полный и правильный порядок выполнения процедур планирования:
- •2. Определите, какая из целей предприятия отвечает необходимым требованиям (критериям) формулирования целей:
- •3. Выберите правильное определение стратегии маркетинга.
- •4. Что представляет собой стратегическая матрица и. Ансоффа?
1. Графические методы планирования.
Существуют линейные графики и сетевые модели упорядочения плановых действий.
Наиболее простым методом упорядочения, который можно
применять при относительно небольшом количестве действий
(от 10 до 40—50) является метод линейных графиков. линейный график выглядит так, как показано на рисунке.
Как следует из рисунка, некоторые виды действий можно делать параллельно. Так, подготовку учебно-методических материалов можно начать в первую неделю выполнения работ. Но некоторые виды действий, например первые четыре, необходимо начинать по порядку. На графике можно также зафиксировать продолжительность выполнения каждого действия, даты их начала и окончания (ранние и поздние) и получающиеся в связи с этим резервы времени для каждого действия.
Для решения очень сложных плановых задач в части упорядочения намечаемых мероприятий во времени применяются методы сетевого планирования и управления (СПУ). Эти методы основаны на моделировании процессов с помощью сетевых графиков и многообразных формализованных расчетов.
Действие |
1-я неделя августа |
2-я неделя августа |
3-я неделя августа |
4-я неделя августа |
1 -я неделя сентября |
2-я неделя сентября |
3-я неделя сентября |
1. Разработать учебный план |
|
|
|
|
|
|
|
2. Согласовать учебный план с комитетом статистики |
|
|
|
|
|
|
|
3. Отпечатать учебный план |
|
|
|
|
|
|
|
4. Утвердить учебный план |
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
5. Заключить договор |
|
|
|
||||
|
|
|
|
||||
6. Подготовить учебно-методические материалы |
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
||||
7. Составить распи |
|
|
|
|
|
|
|
сание занятий |
|
|
|
|
|
||
|
|
|
|
|
Рис. 6.1. Линейный график плана действий
Сетевые модели позволяют формировать календарные планы выполнения комплексов работ, выявлять и мобилизовать резервы времени, добиваясь наиболее эффективного использования этого ограниченного ресурса. Без них очень трудно обойтись, если в план входит не один десяток или даже не одна сотня работ. А если проект включает в себя тысячи и десятки тысяч работ, то сетевое моделирование просто незаменимо.
Главными элементами сетевой модели являются работы, события и пути. Под_работой в системах СПУ понимается протяженный во времени процесс, требующий затрат труда и других ресурсов (понятие работы в СПУ соответствует понятию конкретного действия в линейных графиках). В качестве работы в отдельных случаях могут быть признаны, в частности, ожидание — протяженный во времени процесс, не требующий затрат труда (например, твердение бетона), а также логическая зависимость одной работы от другой, не требующая никаких затрат, в том числе и времени, но обусловленная необходимостью соблюдения очередности наступления событий (такие работы в сетевых моделях называются фиктивными).
Событие — это момент завершения какого-либо процесса (работы или совокупности работ), отражающий конкретный этап выполнения плана (проекта). События в сетевых моделях не имеют продолжительности и совершаются как бы мгновенно. Любое отдельное событие считается совершенным после окончания всех работ, предшествовавших ему. Последующие же работы могут начаться только после данного события. Исходное событие не имеет предшествующих работ и событий, а завершающее — последующих работ и событий,
Путь на сетевых моделях представляет собой завершенную последовательность работ, т.е. последовательную совокупность взаимосвязанных работ от исходного события до, завершающего. При возможности параллельного выполнения некоторых работ на сетевой модели появляется несколько путей достижения завершающего события.
События в сетевых моделях принято изображать кружками, работы — стрелками (ориентированными дугами.
При построении сетевых моделей нужно руководствоваться следующими правилами:
в сетевой модели не должно быть «тупиковых» событий, за исключением завершающего, т.е. событий, из которых не выходит пи одна работа;
в сетевой модели не должно быть «хвостовых» событий, за исключением исходного, т.е. событий, которым не предшествует хотя бы одна работа;
в сетевой модели не должно быть замкнутых контуров и петель, т.е. путей, соединяющих некоторые события с ними же самими;
любые два события могут быть связаны не более чем одной работой;
в сети должно быть только одно исходное и только одно завершающее события.
Табл. 6.1. Продолжительность выполнения работ
-
Кодовое обозначение работы
Наименование работы
Продолжительность работы, дней
(0,1)
Разработать учебный план
9
(0,6)
Подготовить учебные материалы
41
(1,2)
Согласовать учебный план с комитетом по статистике
6
(1,5)
Заключить договор
25
(2,3)
Подготовить учебный план в общепринятой форме
3
(2,4)
Подготовить списки обучающихся
14
(3,4)
Утвердить учебный план
12
(4,5)
Подготовить проект приказа и согласовать его со всеми службами
15
(4,7)
Составить расписание и согласовать его с преподавателями
14
(5,7)
Подписание приказа
4
(6,7)
Комплектование учебных материалов
5
Исходя из того, что общепринятым обозначением работ в сетевых моделях является запись (i,j), где i — начальное, j— конечное события работы, кодовые представления работ в данном примере будут иметь вид: (0,1), (0,6), (1,2), (1,5), (2,3), (2,4), (3,4), (4,5), (4,7), (5,7), (6,7).
Эти обозначения работ плана представлены в первой графе табл. 14.1, во второй графе содержатся наименования работ, в третьей — их продолжительность. В такой форме и нужно представлять па практике все виды работ плана для упорядочения их во времени.
Пусть, как уже указывалось выше, для выполнения данного комплекса работ требуется составить упорядоченный сетевой график. Исходным событием, как следует из перечня работ, является событие 0, поскольку ему не предшествуют никакие работы. Завершающим же — событие 7, поскольку за ним не идет никакая работа.
Используя правило построения сетевых графиков, согласно которому изменение времени отражается слева направо, и полагая, что номера событий в примере естественным образом отражают последовательный ход осуществления работ, можно получить вариант сетевого графика, представленный на рис. 14.3. Чтобы легче было ориентироваться в представленной сети работ и событий, работы имеют краткое название и каждая работа имеет продолжительность исполнения в днях, Работа (4,5), представленная на сети пунктирной стрелкой, является фиктивной, т.е. она не имеет продолжительности и для нее не требуется никаких других ресурсов. Фиктивная работа (4,5) показывает, что работа (6,7) может быть начата только после того, как завершится работа (2,4).
Важнейшим элементом сетевого графика наряду с событиями и работами является путь, под которым принято понимать любую последовательность работ, когда конечное событие каждой работы совпадает с начальным событием следующей за ней работы. Путь считается полным, если начало его совпадает с исходным событием сети, а конец — с завершающим. Самый продолжительный полный путь сетевого графика называется критическим. Критическими же называются также работы и события, расположенные на этом пути.
Сеть, представленная на рис. 8.2, имеет шесть полных путей. Критический путь на ней выделен жирными стрелками и его продолжительность составляет 49 дней. Быстрее выполнить весь комплекс работ нельзя, так как для достижения завершающего события критический путь надо пройти обязательно.
Поскольку другие пути сети по продолжительности меньше, критического, то находящиеся на них события н работы имеют резервы времени, обусловливаемые ранними и поздними сроками начала и окончания работ. Знать эти величины заранее весьма полезно, так как в процессе выполнения плана случайные возмущения внешней среды могут приводить к необходимости маневрирования некоторыми ресурсами. Зная резервы времени работ, находящихся на некритическом пути, можно осуществлять эти маневры, не выходя за пределы планового времени выполнения всего комплекса работ. Некоторые наиболее часто применяемые на практике временные параметры событий и работ сетевых моделей представлены в табл. 6.2.
Табл. 6.2. Временные параметры сетевых моделей
-
Элемент сети,характеризуемый параметром
Наименование параметров
Условное обозначение параметра
Событие i
Ранний срок совершения события Поздний срок совершения события Резерв времени события
tp(i)
tп(i)
R(i)
Работа (i,j)
Продолжительность работы
Ранний срок начала работы
Ранний срок окончания работы Поздний срок качала работы Поздний срок окончания работы Полный резерв времени
t(i,j)
tрн(i,j)
tро(i,j)
tпн(i,j)
tпо(i,j)
Rn(i,j)
Путъ L
Продолжительность пути Продолжительность критического пути
Резерв времени пути
t(L)
tкр
R(L)
Рассмотрим порядок расчета каждого из представленных в табл. 14.2 временных параметров. Ранний срок совершения г-го события определяется продолжительностью максимального пути, предшествующего этому событию: iP(i) = max (Lпi),
где Lпi — любой путь, предшествующий i-му событию.
Для события j, если ему предшествует несколько путей, ранний срок совершения можно находить по формуле
tp(i) = max [tP(i)+ t(i,j)]
Поздний срок совершения i-го события определяется как разность между поздним и ранним сроками его совершения:
tп(i) = tKp-max(Lci),
где Lci — любой путь, следующий за i-ым событием (путь от i-го до завершающего события сети).
Если событие i имеет несколько последующих путей, то поздний срок совершения события i можно находить по формуле
tп(i)=min[tn(j)-t(i,j)]
Резерв времени i-го события определяется как разность между поздним и ранним сроками его совершения:
R(i)=tп(i)-tр(j)
Таким образом, резерв времени события показывает, на какой допустимый период времени можно задержать наступление этого события, не вызывая при этом увеличения срока выполнения всего комплекса работ. Критические события резервов времени не имеют, так как любая задержка в совершении события, лежащего па критическом пути, вызовет такую же задержку в совершении события всего комплекса работ. Из этого следует, что топологию критического пути можно определить не обязательно посредством перебора всех полных путей сетевого графика, что иногда может оказаться утомительным, а просто посредством выявления всех событий, имеющих нулевые резервы времени.
Что касается работ, то они в отличие от событий, не имеющих продолжительности, могут начаться, а также и окончиться в ранние, поздние или в любые другие промежуточные сроки. Очевидно, что ранний срок начала работы (i,j) - tpн(i,j) — совпадает с ранним сроком наступления начального события i:
tрн(i,j)=tр(i)
Тогда ранний срок окончания работы [(i,j) – tро(i,j)] можно рассчитать по формуле
tро(i,j)=tр(i)+t(i,j)
Согласно методологии сетевого планирования ни одна работа не может окончиться после допустимого позднего срока своего конечного события j. Поэтому поздний срок окончания работы [(i,j)-tпо(i,j)] определяется соотношением tпо(i,j)=tн(j)
а поздний срок начала этой работы [tпн(i,j)] — соотношением
tпн(i,j)=tп(j)-t(i,j).
Каждая работа, как и пути, в которые она входит, имеет резервы времени. Резерв времени любого полного пути сетевого графика представляет собой разность между длиной критического пути и длиной данного пути:
R(L) = tKP-t(L).
Резерв пути показывает, насколько может быть увеличена продолжительность всех работ, лежащих на этом пути. Если затянуть выполнение работ, принадлежащих этому пути, на время, большее, чем R(L), то сеть, хотя внешних изменений и не произойдет, станет уже другой, поскольку критический путь переместится на путь L.
Среди резервов времени работ наиболее общий характер имеет полный резерв времени [Rп(i,j)], который показывает, насколько можно увеличить время выполнения данной работы при условии, что срок выполнения комплекса работ останется неизменным.
Полный резерв времени работы (i,j) определяется по формуле
Rп(i,j)) = tп(j)-tр(i)-t(i,j).
Полный резерв времени работы равен резерву максимального из путей, проходящего через данную работу. Этим резервом можно располагать при выполнении данной работы, если ее начальное событие совершится в самый ранний срок, можно допустить совершение ее конечного события в самый поздний срок. Полный резерв времени принадлежит не только этой работе, но и всем полным путям, проходящим через нее. Следовательно, использование полного резерва времени только для одной работы приводит к тому, что резервы времени остальных работ, лежащих на максимальном пути, проходящем через нее, будут полностью исчерпаны. Резервы же времени других работ, лежащих на немаксимальных путях, проходящих через данную работу, сократятся на величину использованного резерва.
Поскольку возможно использование полных резервов времени работ не во всем их объеме, а только частично, то возникают различные варианты выполнения намеченного плана. Методологией сетевого планирования они предусмотрены в других резервах времени работ. Так, выделяют частный резерв времени первого вида, частный резерв времени второго вида и независимый резерв времени. Все они являются частями полного резерва времени и позволяют осуществлять более тонкое маневрирование ограниченными ресурсами в процессе выполнения всего комплекса работ без нарушения времени критического пути. О них можно прочитать в специальной литературе по экономико-математическим методам.