
- •Вопрос 1 Сырье для производства синтетического аммиака. Способы получения водорода и азота
- •Двухступенчатая организация конверсии природного газа.
- •Вопрос 2 Паровая конверсия природного газа: реакции и равновесие процесса.
- •Вопрос 3 Паровая конверсия природного газа: катализаторы.
- •Паровая конверсия природного газа: кинетика.
- •Параметры первой ступени конверсии природного газа.
- •Оборудование конверсии природного газа 1 ступени. Многорядная трубчатая печь.
- •Вопрос 4 Методика расчета материального баланса радиантной зоны трубчатой печи
- •Вопрос 5 Методика расчета теплового баланса радиантной зоны трубчатой печи
- •Вопрос 6 Двухступенчатая организация процесса конверсии природного газа.
- •Особенности второй ступени конверсии.
- •Реакции и равновесие процесса
- •Вопрос 7 Паровоздушная конверсия метана: кинетика, катализаторы и параметры процесса.
- •Вопрос 8 Оборудование стадии паровоздушной конверсии природного газа
- •9. 10. Двухступенчатая организация конверсии монооксида углерода. Конверсия монооксида углерода: реакции и равновесие процесса.
- •Методика расчета материального баланса процесса конверсии со.
- •Методика расчета теплового баланса конвертора со .
- •Очистка конвертированного газа от диоксида углерода. Требования, предъявляемые к хемосорбенту и массообменной аппаратуре.
- •Моноэтаноламиновая очистка: реакции, равновесие, кинетика и параметры процесса.
- •15. Оборудование стадии очистки конвертированного газа от диоксида углерода и регенерации раствора
- •Технологическая схема мэа-очистки.
- •Очистка конвертерного газа от со2 по методу «карсол».
- •18.Физико-химические свойства nн3.Требования к качеству nн3.Синтез nн3 :реакция,равновесие процесса
- •Требования к качеству продукционного nн3 по гост 6221 – 90.
- •19.Синтез аммиака: кинетика, механизм реакции, катализаторы и параметры процесса.
- •20. Оборудование стадии синтеза nн3.Технологические особенности производств
- •23.Производство нак. Сырье. Требования к качеству продукционной кислоты. Стадии производства.Балансовая реакция получения hno3 и расчет расходных коэффициентов. Стадия контактного окисления аммиака…
- •25.Гомогенное окисление монооксида азота: реакции, равновесие, кинетика и параметры процесса.
- •27. Переработка оксидов азота в азотную кислоту: реакции, равновесие, кинетика и параметры процесса.
- •28. Оборудование стадии абсорбции нитрозных газов.
- •30.Методика расчета материального баланса первой тарелки абсорбционной колонны в производстве азотной кислоты.
- •31. Методика расчета теплового баланса первой тарелки абсорбционной колонны в производстве азотной кислоты.
- •33. Сырье и требования к качеству продукционного карбамида. Физико-химические свойства карбамида. Синтез карбамида: реакции и равновесие процесса.
- •34. Синтез карбамида: кинетика и параметры процесса. Диаграмма состояния системы.
- •35. Оборудование стадии синтеза карбамида. Расходные коэффициенты на 1 т карбамида. Технологические особенности производства карбамида.
- •36. Технологические схемы получения карбамида.
- •Вопрсо№39: Методика расчета материального баланса аппарата итн
- •Способы получения элементарной серы. Добыча серы. Требования к качеству серы.
- •Сырье для производства h2so4. Серный колчедан и др. Сернистые соединения металлов, газы цветной металлургии, сульфаты Ca, k, Fe.
- •Газы цветной металлургии
- •Физико-химические основы процесса горения серы. Печи для сжигания жидкой серы. Утилизация теплоты горения серы.
- •Методика расчета материального баланса циклонной печи.
- •Методика расчета теплового баланса циклонной печи.
- •47. Равновесие и кинетика процесса окисления диоксида серы
- •48. Катализаторы для окисления диоксида серы. Контактные аппараты для окисления диоксида серы.
- •49. Методика расчета материального баланса контактного аппарата
- •50. Методика расчета теплового баланса контактного аппарата
- •51.Равновесие и кинетика процесса абсорбции триоксида серы.
- •Аппаратурное оформление стадии абсорбции. Моногидратный абсорбер. Олеумный абсорбер, сушильная башня.
- •53.Методика расчета материального баланса моногидратного абсорбера.
- •55. Технологическая схема печного отделения.
- •56. Технологическая схема контактно-компрессорного отделения.
- •57. Технологическая схема сушильно-абсорбционного отделения.
- •58.Способы производства и применение фосфорной кислоты. Сырье и требования к качеству продукционной фосфорной кислоты. Стадии технологического процесса.
- •Разложение апатитового концентрата смесью серной и фосфорной кислот
- •Фильтрация фосфополугидрата на вакуумных фильтрах, гидроудаление
- •Упаривание (концентрирование) фосфорной кислоты
- •Абсорбция газов
- •59.Химизм процесса взаимодействия фосфатов с кислотами. Кинетика процесса разложения фосфатов.
- •Скорость процесса разложения фосфатов (Кинетика)
- •60.Кристаллизация сульфата кальция и условия образования крупнокристаллического осадка.
- •61.Режимы экстракции фосфорной кислоты. Оборудование для экстракции фосфорной кислоты.
- •62.Выделение и улавливание фтора при получении и переработке эфк. Оборудование стадии.
- •63.Методика расчета материального баланса отделения экстракции в производстве дигидратной эфк.
- •64.Методика расчета теплового баланса отделения экстракции в производстве дигидратной эфк.
- •65. Производство сложных удобрений на основе эфк. Свойства фосфатов аммония. Физико-химические особенности производства аммофоса и фосфатов аммония.
- •Физико-химические особенности н а рисунке показаны изотермы растворимости в системе аммиак – фосфорная кислота – вода при 25 и 75 ºС. Взаимодействие эфк с nh3 происходит по реак-ям (1)-(3).
- •66 Вопрос. Основное оборудование стадий нейтрализации, гранулирования и сушки при получении фосфатов аммония: струйный реактор, саи, аг, сб, бгс.
- •68. Производство диаммонийфосфата, особенности технологии. Требования на даф
- •1. Привести расчет величин δн и δg для I ступени паровой конверсии природного газа.
- •8. Дать полную характеристику колонне синтеза, как реактору для получения карбамида. Материал колонны синтеза.
- •9. Основные стадии процесса окисления аммиака до оксида азота(2), как гетерогенно-каталитического хтп.
- •12 Дать полную характеристику абсорбционной колонне , как реактору получения нак. Материал абсорбционноц колонны.
- •13. Уравнение адиабаты. Зависимость степени превращения оксидов азота в азот для необратимой экзотерм. Реакции (графическая и аналитическая зависимости)
- •14. Дать полную характеристику аппарата типа “кипящий слой”, рассчитать критическую скорость псевдоожижения.
- •15. Интенсификация работы оборудования и пути ее увеличения.
- •17.Охт. Дать полную характеристику экстрактору, как реактру для получения эфк.
Технологическая схема мэа-очистки.
МЭА очистка газа эксплуатируется в агрегате АМ-76, производительностью 1360 т/сут. Конвертируемая паро/газ. смесь под давлением 2,8 МПа и при температуре 40+50ºС.
Поступает в абс-р (5), орошаемый 17÷20% р-ром МЭА. Абсорбция СО2 осущ-ся в абсорбере с высокослойными ситчатыми тарелками, разделёнными на 2 секции: верхняя, предназначенная для тонкой очистки газа, орошается глубокорегенерированным р-ром (II поток); в нижнюю секцию поступ. груборегенир. р-р (I поток), который смешивается с р-ром из верхней секции. Газ, содержащий до 19% СО2 проходит в начале нижнюю секцию, а затем верхнюю и очищ. до остаточного содер. СО2 не более 0,003 ÷0,010% об.
В верхней части абс-ра газ проходит колпачковые тарелки орошаемые флегмой; сепаратор (4) и поступает на метанирование. Р-р МЭА насыщенный до α = 0,67, выходит из нижн. секции абс-ра (5) при t = 57÷65 ºС, и поступает в регенератор – рекуператор (15). Последний разделён также, как и абсорбер на 2 секции. В верхней секции на ситчатых тарелках расположены U – образные т/обменные элементы, в которые через сетку происходит передача тепла от горячего регенерируемого р-ра к насыщенному р-ру. За счёт тепла ПГС, поступает из нижней секции и тепла регенерируемого р-ра обоих потоков, передаваемого через встроенные т/обменники, насыщенный р-р регенерируется в верхней части и содержание СО2 в нём снижается от 0,67 до 0,35 моль /моль.
Далее раствор делится на 2 равных потока. 1-ый поток – грубогенерированный при t = 114÷120 ºС насосом (13) прокач-ся через встроенные т/обменники, где охлождается до 62 ÷ 70ºС. Дальнейшее охлаждение 1 потока происходит в воздушном холодильнике (12) с доохлаждением в летнее время в водяном холодильнике (10). 2-ой поток через переменные устройства внутри регенератора – рекуператора поступает в нижнюю секцию для более глубокой регенерации до содержания СО2 ≈ 0,12 моль/моль. Тонко-регенерированный р-р при тем-ре 125÷130 ºС из нижней секции регенератора – рекуператора подаётся насосом (16) во встроенные т/обменники, где охлаждается до 62÷70ºС. Дальнейшее охлаждение р-ра осуществляется в воздушном холодильнике (11) и водяном холодильнике (9). Тепло для регенерации р-ра подв-ся с конвертированной ПГС, поступающей при t = 174ºС в газовый кипятильник (20). Предусмотрен подвод тепла также через смоловыделитель (14) и паровой кипятильник (17).
Конструкцияя регенератора – рекуператора предусматривает возможность получения чистого СО2, содержащего не более 0,02 % об. горючих примесей, необходимого для производства карбомида. Чистая фракция СО2, составляющая свыше 75% общего объема СО2 выводится из реген.– рекуператора ниже точки ввода насыщенного р-ра при t=65÷70 ºС под Р ≈ 0,135 МПа, охлаждается до 45 ºС в холодильнике (18), проходит сепаратор (19) и направляется к потребителю. Грязная фракция СО2, содер. до 10% горючих, промывается в верх. части регенератора - рекуператора на колпачковых тарелках флегмой, затем охлаждается в холодильнике (18) до 40ºС и, пройдя сепаратор (21), выбрасывается в атмосферу.Для очистки рабочего р-ра МЭА от продуктов разложения, окисления и осмоления, вызывающих коррозию аппаратуры, установлены песчаный и угольный фильтры (на схеме не показаны), а также предусмотрена разгонка части циркулирующего р-ра в спец. аппарате – смоловыделителе (14).