
- •Вопрос 1 Сырье для производства синтетического аммиака. Способы получения водорода и азота
- •Двухступенчатая организация конверсии природного газа.
- •Вопрос 2 Паровая конверсия природного газа: реакции и равновесие процесса.
- •Вопрос 3 Паровая конверсия природного газа: катализаторы.
- •Паровая конверсия природного газа: кинетика.
- •Параметры первой ступени конверсии природного газа.
- •Оборудование конверсии природного газа 1 ступени. Многорядная трубчатая печь.
- •Вопрос 4 Методика расчета материального баланса радиантной зоны трубчатой печи
- •Вопрос 5 Методика расчета теплового баланса радиантной зоны трубчатой печи
- •Вопрос 6 Двухступенчатая организация процесса конверсии природного газа.
- •Особенности второй ступени конверсии.
- •Реакции и равновесие процесса
- •Вопрос 7 Паровоздушная конверсия метана: кинетика, катализаторы и параметры процесса.
- •Вопрос 8 Оборудование стадии паровоздушной конверсии природного газа
- •9. 10. Двухступенчатая организация конверсии монооксида углерода. Конверсия монооксида углерода: реакции и равновесие процесса.
- •Методика расчета материального баланса процесса конверсии со.
- •Методика расчета теплового баланса конвертора со .
- •Очистка конвертированного газа от диоксида углерода. Требования, предъявляемые к хемосорбенту и массообменной аппаратуре.
- •Моноэтаноламиновая очистка: реакции, равновесие, кинетика и параметры процесса.
- •15. Оборудование стадии очистки конвертированного газа от диоксида углерода и регенерации раствора
- •Технологическая схема мэа-очистки.
- •Очистка конвертерного газа от со2 по методу «карсол».
- •18.Физико-химические свойства nн3.Требования к качеству nн3.Синтез nн3 :реакция,равновесие процесса
- •Требования к качеству продукционного nн3 по гост 6221 – 90.
- •19.Синтез аммиака: кинетика, механизм реакции, катализаторы и параметры процесса.
- •20. Оборудование стадии синтеза nн3.Технологические особенности производств
- •23.Производство нак. Сырье. Требования к качеству продукционной кислоты. Стадии производства.Балансовая реакция получения hno3 и расчет расходных коэффициентов. Стадия контактного окисления аммиака…
- •25.Гомогенное окисление монооксида азота: реакции, равновесие, кинетика и параметры процесса.
- •27. Переработка оксидов азота в азотную кислоту: реакции, равновесие, кинетика и параметры процесса.
- •28. Оборудование стадии абсорбции нитрозных газов.
- •30.Методика расчета материального баланса первой тарелки абсорбционной колонны в производстве азотной кислоты.
- •31. Методика расчета теплового баланса первой тарелки абсорбционной колонны в производстве азотной кислоты.
- •33. Сырье и требования к качеству продукционного карбамида. Физико-химические свойства карбамида. Синтез карбамида: реакции и равновесие процесса.
- •34. Синтез карбамида: кинетика и параметры процесса. Диаграмма состояния системы.
- •35. Оборудование стадии синтеза карбамида. Расходные коэффициенты на 1 т карбамида. Технологические особенности производства карбамида.
- •36. Технологические схемы получения карбамида.
- •Вопрсо№39: Методика расчета материального баланса аппарата итн
- •Способы получения элементарной серы. Добыча серы. Требования к качеству серы.
- •Сырье для производства h2so4. Серный колчедан и др. Сернистые соединения металлов, газы цветной металлургии, сульфаты Ca, k, Fe.
- •Газы цветной металлургии
- •Физико-химические основы процесса горения серы. Печи для сжигания жидкой серы. Утилизация теплоты горения серы.
- •Методика расчета материального баланса циклонной печи.
- •Методика расчета теплового баланса циклонной печи.
- •47. Равновесие и кинетика процесса окисления диоксида серы
- •48. Катализаторы для окисления диоксида серы. Контактные аппараты для окисления диоксида серы.
- •49. Методика расчета материального баланса контактного аппарата
- •50. Методика расчета теплового баланса контактного аппарата
- •51.Равновесие и кинетика процесса абсорбции триоксида серы.
- •Аппаратурное оформление стадии абсорбции. Моногидратный абсорбер. Олеумный абсорбер, сушильная башня.
- •53.Методика расчета материального баланса моногидратного абсорбера.
- •55. Технологическая схема печного отделения.
- •56. Технологическая схема контактно-компрессорного отделения.
- •57. Технологическая схема сушильно-абсорбционного отделения.
- •58.Способы производства и применение фосфорной кислоты. Сырье и требования к качеству продукционной фосфорной кислоты. Стадии технологического процесса.
- •Разложение апатитового концентрата смесью серной и фосфорной кислот
- •Фильтрация фосфополугидрата на вакуумных фильтрах, гидроудаление
- •Упаривание (концентрирование) фосфорной кислоты
- •Абсорбция газов
- •59.Химизм процесса взаимодействия фосфатов с кислотами. Кинетика процесса разложения фосфатов.
- •Скорость процесса разложения фосфатов (Кинетика)
- •60.Кристаллизация сульфата кальция и условия образования крупнокристаллического осадка.
- •61.Режимы экстракции фосфорной кислоты. Оборудование для экстракции фосфорной кислоты.
- •62.Выделение и улавливание фтора при получении и переработке эфк. Оборудование стадии.
- •63.Методика расчета материального баланса отделения экстракции в производстве дигидратной эфк.
- •64.Методика расчета теплового баланса отделения экстракции в производстве дигидратной эфк.
- •65. Производство сложных удобрений на основе эфк. Свойства фосфатов аммония. Физико-химические особенности производства аммофоса и фосфатов аммония.
- •Физико-химические особенности н а рисунке показаны изотермы растворимости в системе аммиак – фосфорная кислота – вода при 25 и 75 ºС. Взаимодействие эфк с nh3 происходит по реак-ям (1)-(3).
- •66 Вопрос. Основное оборудование стадий нейтрализации, гранулирования и сушки при получении фосфатов аммония: струйный реактор, саи, аг, сб, бгс.
- •68. Производство диаммонийфосфата, особенности технологии. Требования на даф
- •1. Привести расчет величин δн и δg для I ступени паровой конверсии природного газа.
- •8. Дать полную характеристику колонне синтеза, как реактору для получения карбамида. Материал колонны синтеза.
- •9. Основные стадии процесса окисления аммиака до оксида азота(2), как гетерогенно-каталитического хтп.
- •12 Дать полную характеристику абсорбционной колонне , как реактору получения нак. Материал абсорбционноц колонны.
- •13. Уравнение адиабаты. Зависимость степени превращения оксидов азота в азот для необратимой экзотерм. Реакции (графическая и аналитическая зависимости)
- •14. Дать полную характеристику аппарата типа “кипящий слой”, рассчитать критическую скорость псевдоожижения.
- •15. Интенсификация работы оборудования и пути ее увеличения.
- •17.Охт. Дать полную характеристику экстрактору, как реактру для получения эфк.
Очистка конвертированного газа от диоксида углерода. Требования, предъявляемые к хемосорбенту и массообменной аппаратуре.
После II ступени конверсии СО газ имеет следующий состав( в пересчете на сухой газ),% об:СО – не более 0,65%; СН4 – не более 0,5%; СО2 – не более 19%; Н2 – 61-63%; N2 – 19-22% ;Ar – не более 0,3% .Поскольку после конверсии СО резко возрастает содержание в газовой смеси нежелательного СО2 следующей технологической стадией является очистка газа от СО2.Основные особенности процесса очистки газа от СО2.В крупных современных агрегатах применяется метод хемосорбции. В качестве сорбента обычно используется водный р-р моноэтаноламина (МЭА) НО-СН2-СН2-NН2 или водный раствор поташа К2СО3. Необходимо стремиться к наиболее полному удалению СО2 из конвертированного газа на стадии хемосорбции, поскольку в следующей стадии происходит каталитическое гидрирование остаточного СО2 по реакции:
СО2+4Н2 «СН4 + 2Н2О
При этом тратится ценный водород, необходимый для синтеза аммиака и образуется балластный СН4, удаляемый на стадии синтеза с продувочными газами. Степень очистки газа при хемосорбции зависит как от равновесного давления СО2 над р-ром, так и от скорости абсорбционных пр-сов. По условиям равновесия абсорбция происходит тем полнее, чем ниже тем-ра. Однако скорость абсорбции выше при большей тем-ре. На основании сопоставления термодинамических и кинетических факторов выбирают оптимальную тем-ру абсорбции, которая составляет 50-800С. Узел абсорбционной очистки газа от СО2 включает в себя аппараты, обеспечивающие одновременное протекание 2-х пр-сов: собственно абсорбции СО2 из отработанного р-ра при повышенной тем-ре: 110-135 0С в регенераторе, т.е. поглотительный р-р непрерывно циркулирует между абсорбером и регенератором.Высокая степень абсорбции СО2 из газа и глубокая регенерация р-ра достигается лишь при условии развитого массо – и т/обмена, поэтому абсорбер и регенератор самые громоздкие аппараты в т. схеме амм – го производства.
При выборе эффективного хемосорбента необходимо учитывать следующие его хар-ки:
1)абсорбционная ёмкость – это кол-во газа, к-рое способен поглотить абсорбент, моль/моль или м3/м3.От абсорбционной ёмкости зависят важные показатели процесса: циркуляция абсорбента; расход тепла на десорбцию СО2; условие регенерации раствора и другое.2) селективность р-ля – это отношение р-римости извлекаемого газа к р-римости др. компонентов газовой смеси.От селективности зависит потери менее р-римых газов и как следствие нек-рые расходные коэф-ты.
Тем-ра кипения абсорбента д.б. высокой, а Р, Па насыщенных паров р-ля при тем-ре абсорбции низким. При этом потери абсорбента будут минимальными. Распространение получили абсорбенты с tкип= 170 ÷200º С и Р паров при 30º С – до 19 Па (≈ 0,1 мм. рт. ст.).
вязкость абсорбента д.б. низкого, иначе: уменьшается и т/передачи и возрастают габариты аппаратов, а также новым расход энергии на перекачивание р-ра.
термическая усталость абсорбента, д.б. высокого, чтобы свести к минимуму даже весьма медленные побочные р-ции. Эти р-ции сокращают срок службы абсорбента и могут оказывать коррозионное действие.
коррозионная активность абсорбента должна быть минимальной.
Массообменная аппаратура очищенного газа от СО2, абсорбир. и десабсорбир. должна удовлетворять следующим требованиям:
большая пропускная способность по газу и жидкости
незначительное гидр. сопротивление.
Обеспечение развитого пов-ти м/обмена.
Для этого в качестве м/ обменных элементов при МЭА – очистке используют сочетанное тарелки с высоким бактериальным слоем, а при поташной очистке насадки металлического кольца Паля, керамические сёдла инталокс.
тепловой расход тепла в регенераторе.
стабильность в работе и лёгкость в регуляции процесса.