
- •Понятие о резании, движении резания и его элементах. Кинематические схемы и траектории резания.
- •Г еометрические элементы и поверхности заготовки. Припуск, срезаемый слой, сечение срезаемого слоя и их параметры.
- •3. Основные элементы и геометрические параметры режущего инструмента. Основные случаи изменения углов на инструменте.
- •4 . Механика стружкообразования. Зоны и характеристики деформации срезаемого слоя.
- •5. Контактные процессы при резании, явление наростообразования.
- •Силы резания, методы их теоретического и экспериментального определения. Влияние условий обработки на составляющие силы резания.
- •7. Вынужденные колебания и автоколебания в процессе резания и их влияние на систему резания.
- •11. Особенности абразивной обработки материалов. Прогрессивные способы абразивной обработки.
- •12. Применение смазочно-охлаждающих средств (сос), виды смазочно-охлаждающих жидкостей, способы подачи смазочно-охлаждающих жидкостей в зону резания.
- •13. Понятие обрабатываемости материалов резанием. Особенности обработки труднообрабатываемых металлов и сплавов, неметаллических и композиционных материалов.
- •14. Оптимизация режимов резания.
- •15. Комбинированные методы обработки резанием с дополнительным энергетическим воздействием.
- •16. 0Бработка резанием как система, управление процессом резания.
- •17. Основные виды теплообмена и положения учения о теплопроводности. Закон Фурье. Дифференциальное уравнение теплопроводности.
- •19. Методы экспериментального определения температуры в технологических системах.
- •20. Влияние тепловых процессов на температурные деформации узлов станка, детали и инструмента.
- •21. Требования, предъявляемые к инструментальным материалам. Основные группы инструментальных материалов для изготовления лезвийных и абразивных инструментов.
- •22. Инструментальные стали: группы, примеры маркировки и состав наиболее распространенных марок сталей в каждой группе, область применения сталей.
- •24. Минералокерамика и другие минералы (алмаз, кубический нитрид бора, рубин), применяемые для изготовления лезвийных инструментов, состав наиболее распространенных марок и область их применения.
- •25. Единая геометрия режущих инструментов, связь между углами главной секущей плоскости и плоскостях продольного и поперечного сечения.
- •26 Токарные резцы. Конструктивные разновидности резцов (цельные, напайные, сборные). Пример исполнения токарного проходного резца. Выбор геометрии лезвия.
- •27 Фасонные резцы. Разновидности конструкций. Методика расчета профиля.
- •30. Спиральные сверла. Конструктивные части сверла, особенности геометрии лезвий, методы улучшения геометрии. Конструктивные части сверла, расчет хвостовика (эскиз сверла спирального).
- •29 Фрезы с затылованными зубьями, примеры конструкций, область применения. Выбор кривой затылования (эскиз дисковой модульной фрезы).
- •31 Специальные конструкции свёрл: твёрдосплавные, с внутренним подводом сос, для глубокого сверления, кольцевые.
- •32 Зенкеры и развёртки: разновидности, конструктивные элементы и их выбор, методы регулирования на размер и восстановление размеров.
- •Геометрические параметры и форма режущей части и заточки зенкеров.
- •Развертки
- •33 Инструмент для нарезания резьбы: метчики, плашки, резьбонарезные головки. Типовые конструкции, геометрические параметры.
- •34 Инструмент для накатывания резьбы: плашки, ролики, головки. Конструктивные элементы.
- •35 Зуборезные долбяки. Расчёт дискового долбяка для наружного зацепления.
- •37 Абразивные материалы и инструменты. Маркировка абразивных и алмазных кругов. Основные формы шлифовальных кругов. Выбор кругов.
- •38 Сравнительные преимущества и недостатки инструментов цельных, составных и сборных конструкций.
- •39 Методы повышения работоспособности режущего инструмента.
- •Выбор смазочно-охлаждающих жидкостей
- •Улучшение обрабатываемости конструкционной стали
- •40 Основные направления совершенствования режущего инструмента.
- •Применение современных инструментальных материалов
- •41. Формообразование поверхностей на станках: геометрические и реальные поверхности, методы образования производящих линий. Методы образования поверхностей.
- •42. Движения в станках: классификация движений в станках, структура и параметры исполнительных движений, реализация этих движений при обработке поверхностей разными способами.
- •43. Кинематическая структура станков, типы кинематических групп, способы их соединения, структурные схемы станков, классы кинематических групп. Методика расчета кинематической настройки.
- •46. Типовые механизмы станков: реверсивные механизмы, обгонные механизмы, механизмы прерывистых движений, суммирующие механизмы. Их назначение, конструктивное исполнение.
- •I. Блок задания и поэтапного ввода
- •49. Токарные станки с чпу: особенности конструкции станка и его приводов, кинематика станка. Синхронизация движений исполнительных органов при нарезании резьб.
- •50. Токарно-револьверные станки: схемы обработки поверхностей, виды револьверных головок, особенности компоновки, кинематика, устройство и настройка станков, применяемые приспособления.
- •54. Фрезерные станки: их типы и технологические возможности, схемы обработки поверхностей на станках. Компоновка, особенности кинематики и устройства основных типов фрезерных станков.
- •57. Станки для обработки конических зубчатых колес: схемы обработки, кинематическая структура и настройка станков.
- •58. Резьбофрезерные станки: схемы обработки дисковой, гребенчатой и червячной фрезами, кинематическая структура и настройка станков при обработке различными инструментами.
- •60. Агрегатные станки. Особенности конструкции. Область применения. Типовые конструкции унифицированных узлов.
- •61. Производительность станков и систем. Показатели и пути повышения производительности.
- •62. Точность станков и ее оценка. Основные виды погрешностей станков. Пути повышения точности станков. Испытания станков на точность и жесткость.
- •63. Надежность станков и систем. Показатели и пути повышения надежности.
- •64. Приводы со ступенчатым регулированием скорости. Множительные структуры приводов. Формула структуры привода. Графоаналитический метод кинематического расчета приводов.
- •65. Приводы главного движения с бесступенчатым регулированием. Проектирование кинематики.
- •66. Приводы подачи станков. Типовые конструкции. Проектирование кинематики п. П. Со ступенчатым регулированием.
- •67. Конструирование шпиндельных узлов с опорами качения.
- •68. Шпиндельные узлы и гидродинамическими и гидростатическими опорами.
- •69. Конструкции направляющих скольжения. Материалы. Основные формы направляющих. Устройства для регулировки зазоров, смазка и защита направляющих скольжения. Расчет направляющих скольжения
- •70. Конструкции открытых и закрытых направляющих качения. Материалы. Смазывание и защита направляющих. Расчет направляющих качения
42. Движения в станках: классификация движений в станках, структура и параметры исполнительных движений, реализация этих движений при обработке поверхностей разными способами.
В
се
движения в станках, в том числе
формообразующие, называются исполнительными.
По целевому признаку их можно разделить
на движения: формообразования Ф,
врезания Вр,
деления Д,
позиционирования Пз,
управления Упр,
вспомогательные Вс.
Определение формообразующих движений
приведено выше (см. 2.1).
Врезание Вр – движение инструмента или заготовки, устанавливающие их в процессе резания в исходное для процесса формообразования положение.
Деление Д – движение, перемещающее траекторию движения формообразования на определенную, в большинстве случаев постоянную, величину для образования нескольких одинаковых по форме поверхностей. Например, при обработке цилиндрического зубчатого колеса модульной фрезой (рис.2.4) после фрезерования очередной впадины движениями В1 и П2 фрезы обрабатываемую заготовку поворачивают на угловой шаг зубьев движением деления В3.
Движения деления могут быть периодическими или непрерывными, что зависит в основном от конструкции режущего инструмента.
Позиционирование Пз – движение, обеспечивающее перемещение траектории движений формообразования и врезания в новое геометрическое положение.
К движениям управления Упр относят те, которые совершают органы управления, регулирования и координации всех других исполнительных движений станка. К таким органам относятся муфты, реверсивные механизмы, кулачки, ограничители хода и др.
К вспомогательным Вс движениям относятся движения, обеспечивающие установку, зажим, освобождение, транспортирование, быстрое перемещение заготовки и режущего инструмента в зону резания, охлаждение, смазывание, удаление стружки, правку инструмента и т.п.
Любое исполнительное движение в станке характеризуется пятью параметрами пространства и времени: траекторией, скоростью, направлением, путем и исходной точкой. Наиболее важными параметрами любого движения являются траектория и скорость.
В зависимости от характера исполнительного движения, формы его траектории, схемы резания, вида и конструкции инструмента теоретически движение можно настраивать по двум, трем, четырем или пяти параметрам.
Движения формообразования и врезания являются движениями резания. Формообразующее движение, происходящее с наибольшей скоростью, называется главным движением резания или просто главным движением. Остальные движения принято называть движениями подачи.
Главное движение может быть вращательным и поступательным. На это движение затрачивается большая часть мощности привода станка. Например, у станков токарной группы главным движением является вращение, сверлильных, фрезерных и шлифовальных станков главное движение совершает инструмент (рис.2.5, г-е), частота вращения которого определяется по приведенной формуле для токарных станков. У долбежных, протяжных и
Рис. 2.5. Виды главного движения и подач
cтрогальных станков главным движением является поступательно-возвратное (рис. 2.5, ж).
Движение подачи – это относительное движение инструмента вдоль обрабатываемой поверхности со скоростью, меньшей скорости резания, обеспечивающее совместно с главным движением формообразование детали. Подачу определяют как величину перемещения инструмента относительно детали при обработке за один оборот (двойной ход) детали или инструмента (относительные подачи на токарных, сверлильных и строгальных станках) или в еденицу времени (абсолютные подачи на фрезерных и шлифовальных станках).
В зависимости от направления движения инструмента по отношению к детали подачи делят на продольную s (рис. 2.5, а), поперечную sп (рис.2.5,б), касательную sr (рис.2.5, в), радиальную sр (рис. 2.5, г), круговую sк (рис. 2.4,д). Кроме того, подачи могут быть осевыми (рис. 2.5, з) в сверлильных станках, вертикальными sв (рис.2.5, е) в зубофрезерных станках.