- •Понятие о резании, движении резания и его элементах. Кинематические схемы и траектории резания.
- •Г еометрические элементы и поверхности заготовки. Припуск, срезаемый слой, сечение срезаемого слоя и их параметры.
- •3. Основные элементы и геометрические параметры режущего инструмента. Основные случаи изменения углов на инструменте.
- •4 . Механика стружкообразования. Зоны и характеристики деформации срезаемого слоя.
- •5. Контактные процессы при резании, явление наростообразования.
- •Силы резания, методы их теоретического и экспериментального определения. Влияние условий обработки на составляющие силы резания.
- •7. Вынужденные колебания и автоколебания в процессе резания и их влияние на систему резания.
- •11. Особенности абразивной обработки материалов. Прогрессивные способы абразивной обработки.
- •12. Применение смазочно-охлаждающих средств (сос), виды смазочно-охлаждающих жидкостей, способы подачи смазочно-охлаждающих жидкостей в зону резания.
- •13. Понятие обрабатываемости материалов резанием. Особенности обработки труднообрабатываемых металлов и сплавов, неметаллических и композиционных материалов.
- •14. Оптимизация режимов резания.
- •15. Комбинированные методы обработки резанием с дополнительным энергетическим воздействием.
- •16. 0Бработка резанием как система, управление процессом резания.
- •17. Основные виды теплообмена и положения учения о теплопроводности. Закон Фурье. Дифференциальное уравнение теплопроводности.
- •19. Методы экспериментального определения температуры в технологических системах.
- •20. Влияние тепловых процессов на температурные деформации узлов станка, детали и инструмента.
- •21. Требования, предъявляемые к инструментальным материалам. Основные группы инструментальных материалов для изготовления лезвийных и абразивных инструментов.
- •22. Инструментальные стали: группы, примеры маркировки и состав наиболее распространенных марок сталей в каждой группе, область применения сталей.
- •24. Минералокерамика и другие минералы (алмаз, кубический нитрид бора, рубин), применяемые для изготовления лезвийных инструментов, состав наиболее распространенных марок и область их применения.
- •25. Единая геометрия режущих инструментов, связь между углами главной секущей плоскости и плоскостях продольного и поперечного сечения.
- •26 Токарные резцы. Конструктивные разновидности резцов (цельные, напайные, сборные). Пример исполнения токарного проходного резца. Выбор геометрии лезвия.
- •27 Фасонные резцы. Разновидности конструкций. Методика расчета профиля.
- •30. Спиральные сверла. Конструктивные части сверла, особенности геометрии лезвий, методы улучшения геометрии. Конструктивные части сверла, расчет хвостовика (эскиз сверла спирального).
- •29 Фрезы с затылованными зубьями, примеры конструкций, область применения. Выбор кривой затылования (эскиз дисковой модульной фрезы).
- •31 Специальные конструкции свёрл: твёрдосплавные, с внутренним подводом сос, для глубокого сверления, кольцевые.
- •32 Зенкеры и развёртки: разновидности, конструктивные элементы и их выбор, методы регулирования на размер и восстановление размеров.
- •Геометрические параметры и форма режущей части и заточки зенкеров.
- •Развертки
- •33 Инструмент для нарезания резьбы: метчики, плашки, резьбонарезные головки. Типовые конструкции, геометрические параметры.
- •34 Инструмент для накатывания резьбы: плашки, ролики, головки. Конструктивные элементы.
- •35 Зуборезные долбяки. Расчёт дискового долбяка для наружного зацепления.
- •37 Абразивные материалы и инструменты. Маркировка абразивных и алмазных кругов. Основные формы шлифовальных кругов. Выбор кругов.
- •38 Сравнительные преимущества и недостатки инструментов цельных, составных и сборных конструкций.
- •39 Методы повышения работоспособности режущего инструмента.
- •Выбор смазочно-охлаждающих жидкостей
- •Улучшение обрабатываемости конструкционной стали
- •40 Основные направления совершенствования режущего инструмента.
- •Применение современных инструментальных материалов
- •41. Формообразование поверхностей на станках: геометрические и реальные поверхности, методы образования производящих линий. Методы образования поверхностей.
- •42. Движения в станках: классификация движений в станках, структура и параметры исполнительных движений, реализация этих движений при обработке поверхностей разными способами.
- •43. Кинематическая структура станков, типы кинематических групп, способы их соединения, структурные схемы станков, классы кинематических групп. Методика расчета кинематической настройки.
- •46. Типовые механизмы станков: реверсивные механизмы, обгонные механизмы, механизмы прерывистых движений, суммирующие механизмы. Их назначение, конструктивное исполнение.
- •I. Блок задания и поэтапного ввода
- •49. Токарные станки с чпу: особенности конструкции станка и его приводов, кинематика станка. Синхронизация движений исполнительных органов при нарезании резьб.
- •50. Токарно-револьверные станки: схемы обработки поверхностей, виды револьверных головок, особенности компоновки, кинематика, устройство и настройка станков, применяемые приспособления.
- •54. Фрезерные станки: их типы и технологические возможности, схемы обработки поверхностей на станках. Компоновка, особенности кинематики и устройства основных типов фрезерных станков.
- •57. Станки для обработки конических зубчатых колес: схемы обработки, кинематическая структура и настройка станков.
- •58. Резьбофрезерные станки: схемы обработки дисковой, гребенчатой и червячной фрезами, кинематическая структура и настройка станков при обработке различными инструментами.
- •60. Агрегатные станки. Особенности конструкции. Область применения. Типовые конструкции унифицированных узлов.
- •61. Производительность станков и систем. Показатели и пути повышения производительности.
- •62. Точность станков и ее оценка. Основные виды погрешностей станков. Пути повышения точности станков. Испытания станков на точность и жесткость.
- •63. Надежность станков и систем. Показатели и пути повышения надежности.
- •64. Приводы со ступенчатым регулированием скорости. Множительные структуры приводов. Формула структуры привода. Графоаналитический метод кинематического расчета приводов.
- •65. Приводы главного движения с бесступенчатым регулированием. Проектирование кинематики.
- •66. Приводы подачи станков. Типовые конструкции. Проектирование кинематики п. П. Со ступенчатым регулированием.
- •67. Конструирование шпиндельных узлов с опорами качения.
- •68. Шпиндельные узлы и гидродинамическими и гидростатическими опорами.
- •69. Конструкции направляющих скольжения. Материалы. Основные формы направляющих. Устройства для регулировки зазоров, смазка и защита направляющих скольжения. Расчет направляющих скольжения
- •70. Конструкции открытых и закрытых направляющих качения. Материалы. Смазывание и защита направляющих. Расчет направляющих качения
38 Сравнительные преимущества и недостатки инструментов цельных, составных и сборных конструкций.
Способ крепления режущего материала определяет многие показатели работоспособности инструмента: прочность, жесткость, виброустойчивость, стойкость, производительность и экономичность.
Экономия твердых сплавов достигается выпуском режущих элементов в виде пластин, которые крепятся на корпусах инструментов механически, напайкой или приклеиванием. Целиком из твердого сплава изготавливают инструменты мелких размеров или специального назначения.
Наибольшей прочностью, жесткостью и виброустойчивостью обладают цельные и составные конструкции (сварные, наварные, паяные, клееные), а наибольшей экономичностью ─ сборные с механическим креплением режущих элементов, так как они позволяют не только экономить режущий материал но допускают многократное использование корпусов, восстанавливание размеров инструмента после переточек, замену отдельных зубьев после выхода их из строя и во многих случаях позволяют регулировать размеры обработки.
Сборные конструкции с механическим креплением сменных многогранных пластин (СМП) обладают дополнительным преимуществами. Они обеспечивают повышенную, по сравнению с напайными, стойкость из-за устранения внутренних напряжений, привносимых напайкой пластин, быстрый ввод в работу новых режущих кромок путем поворота пластин на следующую грань, легкий сбор отходов твердого сплава и наиболее полная их утилизация. Это позволяет устранить затраты на переточки, сократить транспортные расходов по перевозке инструментов и складские помещения для их хранения в связи с сокращением количества корпусов. Несмотря на более высокую стоимость сборных инструментов по сравнению с составными, затраты на сборный инструмент, отнесенные к одной обработанной детали, в силу указанных достоинств, самые низкие. Поэтому сборные конструкции следует использовать наиболее широко, особенно с механическим креплением СМП. Конкретные способы крепления ножей, пластин и др. описаны в учебной и справочной литературе, а также в последующих главах данного пособия.
Составные конструкции применяют при недостаточной жесткости сборных или в случаях невозможности выполнения механического крепления. Иногда они могут оказаться экономичнее сборных. Это справедливо при незначительном потреблении инструментов, когда экономичность инструмента определяется в основном его первоначальной стоимостью. По этой причине наиболее экономичными инструментами разового использования могут быть некоторые виды, целиком изготовленные из быстрорежущей стали.
39 Методы повышения работоспособности режущего инструмента.
Общемашиностроительные нормативы режимов резания на все виды режущего инструмента регламентируют (с учетом особенностей операции) выбор инструментального материала, конструкции и основных параметров инструмента, режимов резания, а также критерии затупления, стойкость инструмента и его расход.
Нормативы разработаны применительно к обработке наиболее распространенных конструкционных материалов: конструкционных сталей, чугунов и алюминиевых сплавов.
В нормативах даются различные значения режимов обработки и рекомендации по их применению. В некоторых случаях для конкретных заводских условии целесообразно на базе общемашиностроительных нормативов разработать заводские. При этом могут быть учтены существующая технология, состояние парка металлорежущих станков, требования, предъявляемые к сходящей стружке, и т.д. Каждый из этих факторов существенно влияет как на выбор конструкции применяемого инструмента, так и на значения режимов резания. Внедрение нормативов режимов резания должно сопровождаться корректировкой времени обработки деталей и норм выработки. Корректировку следует фиксировать в соответствующей технологической документации.
В нормативах даются рекомендации по режимам обработки различными инструментами на станках с ЧПУ. Для резцов и концевых фрез выпущены специальные нормативы режимов резания применительно к станкам с ЧПУ с учетом особенностей обработки сложных профилей при точении и концевом фрезеровании.
Для других видов инструмента особенность применения на станке с ЧПУ связана с необходимостью повышения надежности их работы, поэтому выбор режимов резания должен вестись с учетом вероятностного характера стойкости инструмента. В нормативах даются коэффициенты, позволяющие определить параметры процесса резания в зависимости от требуемых значений стойкости инструмента.
Применение рациональных режимов резания требует пересмотра параметров технологического процесса (а иногда и отдельных операций), поэтому их внедрение целесообразно совмещать с введением в технологические процессы прогрессивных конструкций режущего инструмента.
