
- •Понятие о резании, движении резания и его элементах. Кинематические схемы и траектории резания.
- •Г еометрические элементы и поверхности заготовки. Припуск, срезаемый слой, сечение срезаемого слоя и их параметры.
- •3. Основные элементы и геометрические параметры режущего инструмента. Основные случаи изменения углов на инструменте.
- •4 . Механика стружкообразования. Зоны и характеристики деформации срезаемого слоя.
- •5. Контактные процессы при резании, явление наростообразования.
- •Силы резания, методы их теоретического и экспериментального определения. Влияние условий обработки на составляющие силы резания.
- •7. Вынужденные колебания и автоколебания в процессе резания и их влияние на систему резания.
- •11. Особенности абразивной обработки материалов. Прогрессивные способы абразивной обработки.
- •12. Применение смазочно-охлаждающих средств (сос), виды смазочно-охлаждающих жидкостей, способы подачи смазочно-охлаждающих жидкостей в зону резания.
- •13. Понятие обрабатываемости материалов резанием. Особенности обработки труднообрабатываемых металлов и сплавов, неметаллических и композиционных материалов.
- •14. Оптимизация режимов резания.
- •15. Комбинированные методы обработки резанием с дополнительным энергетическим воздействием.
- •16. 0Бработка резанием как система, управление процессом резания.
- •17. Основные виды теплообмена и положения учения о теплопроводности. Закон Фурье. Дифференциальное уравнение теплопроводности.
- •19. Методы экспериментального определения температуры в технологических системах.
- •20. Влияние тепловых процессов на температурные деформации узлов станка, детали и инструмента.
- •21. Требования, предъявляемые к инструментальным материалам. Основные группы инструментальных материалов для изготовления лезвийных и абразивных инструментов.
- •22. Инструментальные стали: группы, примеры маркировки и состав наиболее распространенных марок сталей в каждой группе, область применения сталей.
- •24. Минералокерамика и другие минералы (алмаз, кубический нитрид бора, рубин), применяемые для изготовления лезвийных инструментов, состав наиболее распространенных марок и область их применения.
- •25. Единая геометрия режущих инструментов, связь между углами главной секущей плоскости и плоскостях продольного и поперечного сечения.
- •26 Токарные резцы. Конструктивные разновидности резцов (цельные, напайные, сборные). Пример исполнения токарного проходного резца. Выбор геометрии лезвия.
- •27 Фасонные резцы. Разновидности конструкций. Методика расчета профиля.
- •30. Спиральные сверла. Конструктивные части сверла, особенности геометрии лезвий, методы улучшения геометрии. Конструктивные части сверла, расчет хвостовика (эскиз сверла спирального).
- •29 Фрезы с затылованными зубьями, примеры конструкций, область применения. Выбор кривой затылования (эскиз дисковой модульной фрезы).
- •31 Специальные конструкции свёрл: твёрдосплавные, с внутренним подводом сос, для глубокого сверления, кольцевые.
- •32 Зенкеры и развёртки: разновидности, конструктивные элементы и их выбор, методы регулирования на размер и восстановление размеров.
- •Геометрические параметры и форма режущей части и заточки зенкеров.
- •Развертки
- •33 Инструмент для нарезания резьбы: метчики, плашки, резьбонарезные головки. Типовые конструкции, геометрические параметры.
- •34 Инструмент для накатывания резьбы: плашки, ролики, головки. Конструктивные элементы.
- •35 Зуборезные долбяки. Расчёт дискового долбяка для наружного зацепления.
- •37 Абразивные материалы и инструменты. Маркировка абразивных и алмазных кругов. Основные формы шлифовальных кругов. Выбор кругов.
- •38 Сравнительные преимущества и недостатки инструментов цельных, составных и сборных конструкций.
- •39 Методы повышения работоспособности режущего инструмента.
- •Выбор смазочно-охлаждающих жидкостей
- •Улучшение обрабатываемости конструкционной стали
- •40 Основные направления совершенствования режущего инструмента.
- •Применение современных инструментальных материалов
- •41. Формообразование поверхностей на станках: геометрические и реальные поверхности, методы образования производящих линий. Методы образования поверхностей.
- •42. Движения в станках: классификация движений в станках, структура и параметры исполнительных движений, реализация этих движений при обработке поверхностей разными способами.
- •43. Кинематическая структура станков, типы кинематических групп, способы их соединения, структурные схемы станков, классы кинематических групп. Методика расчета кинематической настройки.
- •46. Типовые механизмы станков: реверсивные механизмы, обгонные механизмы, механизмы прерывистых движений, суммирующие механизмы. Их назначение, конструктивное исполнение.
- •I. Блок задания и поэтапного ввода
- •49. Токарные станки с чпу: особенности конструкции станка и его приводов, кинематика станка. Синхронизация движений исполнительных органов при нарезании резьб.
- •50. Токарно-револьверные станки: схемы обработки поверхностей, виды револьверных головок, особенности компоновки, кинематика, устройство и настройка станков, применяемые приспособления.
- •54. Фрезерные станки: их типы и технологические возможности, схемы обработки поверхностей на станках. Компоновка, особенности кинематики и устройства основных типов фрезерных станков.
- •57. Станки для обработки конических зубчатых колес: схемы обработки, кинематическая структура и настройка станков.
- •58. Резьбофрезерные станки: схемы обработки дисковой, гребенчатой и червячной фрезами, кинематическая структура и настройка станков при обработке различными инструментами.
- •60. Агрегатные станки. Особенности конструкции. Область применения. Типовые конструкции унифицированных узлов.
- •61. Производительность станков и систем. Показатели и пути повышения производительности.
- •62. Точность станков и ее оценка. Основные виды погрешностей станков. Пути повышения точности станков. Испытания станков на точность и жесткость.
- •63. Надежность станков и систем. Показатели и пути повышения надежности.
- •64. Приводы со ступенчатым регулированием скорости. Множительные структуры приводов. Формула структуры привода. Графоаналитический метод кинематического расчета приводов.
- •65. Приводы главного движения с бесступенчатым регулированием. Проектирование кинематики.
- •66. Приводы подачи станков. Типовые конструкции. Проектирование кинематики п. П. Со ступенчатым регулированием.
- •67. Конструирование шпиндельных узлов с опорами качения.
- •68. Шпиндельные узлы и гидродинамическими и гидростатическими опорами.
- •69. Конструкции направляющих скольжения. Материалы. Основные формы направляющих. Устройства для регулировки зазоров, смазка и защита направляющих скольжения. Расчет направляющих скольжения
- •70. Конструкции открытых и закрытых направляющих качения. Материалы. Смазывание и защита направляющих. Расчет направляющих качения
30. Спиральные сверла. Конструктивные части сверла, особенности геометрии лезвий, методы улучшения геометрии. Конструктивные части сверла, расчет хвостовика (эскиз сверла спирального).
Осевой режущий инструмент – лезвийный инструмент для обработки с главным вращательным движением резания и движением подачи вдоль оси главного движения резания.
Сверло – осевой режущий инструмент для образования отверстия в сплошном материале и увеличения диаметра имеющегося отверстия.
Типы свёрл:
Перовые.
С прямыми канавками.
Спиральные.
Для сверления глубоких отверстий.
Пушечные.
Кольцевые и т.д.
Комбинированные (центровочные и ступенчатые).
Спиральное сверло применяют для обработки отверстий под зенкерование, развёртывание, нарезание резьбы метчиками.
Основные части сверла:
Хвостовик – для закрепления и передачи крутящего момента.
Рабочая часть – режущая и направляющая.
Шейка – соединяет хвостовик и рабочую часть.
Угол
в плане
определяет производительность и
стойкость сверла, величину переднего
угла γ
При увеличении угла возрастает значение осевой составляющей силы резания Px и крутящий момент Pz .
Меньшее значение угла позволяет сверлу легко проникать в обрабатываемый материал, увеличивает длину режущей кромки, следовательно, улучшается теплоотвод, недостаток: уменьшается толщина срезаемого слоя – а и прочность сверла ухудшается.
Значение угла при обработке твёрдых и хрупких материалов 130÷150 °, мягких и вязких материалов 80÷90 °, для стандартных свёрл – 118 °.
Для
уменьшения износа наиболее нагруженного
участка режущей кромки рекомендуют
дополнительную заточку переходной
кромки под углом
.
При двойной заточке длинна режущей кромки увеличивается, при этом улучшается теплоотвод и падает удельная нагрузка на режущую кромку.
Угол наклона винтовой канавки ω относится к наружному диаметру сверла.
С ↗<ω ↗<γ, улучшается транспортирующая способность стружечных канавок, облегчает процесс резания.
Недостатки: но при этом ослабляется режущая кромка на периферии.
Рекомендуемое значение для Al, Cu – 35÷45 °.
Латуни, бронзы – 8÷12 ̊
Стали и чугуны повышенной твёрдости – 10÷15 °
Спиральные свёрла обычно изготавливают праворежущими (вращение по часовой стрелке, если смотреть со стороны хвостовика).
Свёрла с левым направлением вращения применяют в станках-автоматах.
-
шаг стружечной канавки сверла.
В процессе резания происходит вращение сверла и его перемещение вдоль оси. Результатом сложения этих движений является винтовая линия с шагом, равным величине подачи на один оборот.
Реальные значения углов α и β отличаются от стандартных.
Значение переднего и заднего углов резко изменяется вдоль режущей кромки сверла. Для сверла с ω=30° значения угла γ изменяется в пределах +30 ÷ -24° (на поперечной режущей кромке), что приводит к неравномерному износу каждой точки режущей кромки сверла.
Переходный
участок подвергается усиленному износу
вследствие максимального значения
переднего угла γ, ухудшенного теплоотвода
от режущей кромки и максимального
значения
.Отрицательное значение угла γ на
поперечной режущей кромке создаёт
тяжёлые условия работы, min
значение
(фактически
равное нулю) приводит к тому, что
поперечная режущая кромка не режет, а
вдавливается в обрабатываемый материал
(50-60% от осевого усилия приходится на
поперечную режущую кромку).
Значение угла α измеряется в плоскости перпендикулярной режущей кромке.
Значение угла α изменяется вдоль режущей кромки, а также по направлению схода затылованной поверхности.
Поперечная режущая кромка образуется при пересечении образующих задней поверхности. Они характеризуются углом Ψ – угол между осью симметрии и поперечной режущей кромкой и величиной А (длинна поперечной режущей кромки).
Потери режущей кромки – сложная пространственная кривая.
Ленточка сверла
Для уменьшения трения по вспомогательным задним поверхностям, уменьшения теплообразования, формируются ленточки, шириной 0,2÷2мм. Ленточки служат также и для направления сверла в работе.
Вначале на величине приблизительно 0,5S , где S-подача, мм/об, они служат вспомогательной зачищающей режущей кромкой.
Для улучшения направления сверла в работе делают двойную ленточку – меньше стойкость.
Для уменьшения трения применяют затылование ленточки.
Утонение калибрующей части сверла
(вспомогательный угол в плане)применяют для облегчения работы, уменьшения трения и тепловыделения. Величина утонения составляет 0,03÷0,12мм на 100мм длинны рабочей части сверла.
Стружколоматели
Для обеспечения устойчивого дробления стружки на потоки делают канавки – по передней или задней поверхностям.
Канавки по передней поверхности
Методы улучшения режущих свойств свёрл
Подточки перемычки, т.е. уменьшение активной части перемычки
двойная заточка сверла.
Подточка передней поверхности с целью выравнивания значения переднего угла γ вдоль всей режущей кромки.
Применение свёрл с увеличенным углом наклона винтовой линии ω=45÷60 ̊
Проверочный расчёт свёрл на прочность
Величина критической (разрушающей) силы для сверла:
k – коэффициент учитывающий степень завитости сверла
F – площадь поперечного сечения рабочей части сверла
σs – предел текучести
Расчёт на продольный изгиб
l0 – длинна рабочей части сверла,мм.
D – наружний диаметр сверла,мм
28, 29 Фрезы
Фрезы – лезвийный инструмент для обработки с главным вращательным движением резания, без возможности изменения радиуса траектории этого движения, и хотя бы одним движением подачи, направление которого не совпадает с осью главного движения.
Типы фрез:
По конструкции зубьев:
(29) Затылованные и незатылованные.
Затылованный зуб – зуб форма поверхности которого обеспечивает постоянство профиля режущей кромки при повторных заточках по передней поверхности.