
- •Оглавление
- •Глава 1. Жизненный цикл программного обеспечения ……………………………………………43
- •Глава 2. Методические аспекты
- •Глава 3. Моделирование бизнес-процессов
- •Глава 4. Анализ и проектирование
- •Глава 5. Технологии создания программного
- •Глава 6. Оценка трудоемкости создания
- •Глава 7. Особенности современных проектов ........527
- •Предисловие
- •Введение
- •Глава 1 жизненный цикл программного обеспечения
- •Нормативно-методическое обеспечение создания по
- •Стандарт жизненного цикла по
- •Основные процессы жц по
- •Вспомогательные процессы жизненного цикла по
- •Организационные процессы жизненного цикла по
- •Взаимосвязь между процессами жц по
- •Модели жизненного цикла по
- •Каскадная модель жц
- •Итерационная модель жизненного цикла
- •Методика spmn
- •Пример процесса «управление требованиями»
- •Пример процесса «управление конфигурацией по»
- •Общие принципы проектирования систем
- •Визуальное моделирование
- •Структурные методы анализа и проектирования по
- •Метод функционального моделирования
- •Описание типов связей
- •Моделирования процессов idef3
- •Типы связей idef3
- •Типы соединений
- •Моделирование потоков данных
- •Количественный анализ диаграмм
- •Сравнительный анализ sadt-моделей и диаграмм потоков данных
- •Моделирование данных
- •Объектно-ориентированные методы анализа и проектирования по
- •Основные принципы построения объектной модели
- •Основные элементы объектной модели
- •Значения мощности
- •Унифицированный язык моделирования uml
- •Диаграммы вариантов использования
- •Диаграммы взаимодействия
- •Диаграммы классов
- •Диаграммы состояний
- •Диаграммы деятельности
- •Диаграммы компонентов
- •Диаграммы размещения
- •Механизмы расширения uml
- •Количественный анализ диаграмм uml
- •Основные элементы языка uml
- •Основные типы связей языка uml
- •Диапазоны оценок для диаграмм uml
- •Образцы
- •Сопоставление и взаимосвязь структурного и объектно-ориентированного подходов
- •Структурный (процессный) подход к моделированию бизнес-процессов
- •Принципы процессного подхода
- •Применение диаграмм потоков данных
- •Система моделирования aris
- •Метод ericsson-penker21
- •Пример использвания процессного подхода
- •История болезни пациента
- •Спецификация структур данных
- •Построение диаграмм потоков данных нулевого и последующих уровней
- •Объектно-ориентированный подход к моделированию бизнес-процессов
- •Методика моделирования
- •Пример использования объектно-ориентированного подхода
- •Пример спецификации требований к программному обеспечению
- •Пример структурного проектирования по
- •Построение диаграмм системных процессов и диаграмм последовательностей экранных форм
- •Объектно-ориентированный анализ
- •Архитектурный анализ
- •Анализ вариантов использования
- •Объектно-ориентированное проектирование
- •Проектирование архитектуры системы
- •Проектирование элементов системы
- •Глава 5 технологии создания программного обеспечения
- •Определение технологии
- •Общие требования, предъявляемые
- •Внедрение тс по в организации
- •Общие сведения
- •Определение потребностей в тс по
- •Оценка и выбор тс по
- •Критерии оценки и выбора тс по
- •Выполнение пилотного проекта
- •Практическое внедрение тс по
- •Примеры тс по
- •Технология rup (rational unified process)
- •Технология oracle
- •Технология borland
- •Технология computer associates
- •Глава 6 оценка трудоемкости создания программного обеспечения
- •Методы оценки и их классификация
- •Методика оценки трудоемкости разработки по на основе функциональных точек
- •Определение функциональных типов
- •Определение количества и сложности функциональных типов по данным
- •Сложность ilf и eif
- •Определение количества и сложности транзакционных функциональных типов
- •Сложность ei
- •Сложность ео
- •Подсчет количества функциональных точек
- •Зависимость количества fp от сложности функционального типа
- •Коммуникации данных
- •Распределенная обработка данных
- •Производительность
- •Эксплуатационные ограничения
- •Частота транзакций
- •Ввод данных в режиме «онлайн»
- •Эффективность работы конечных пользователей1
- •Онлайновое обновление
- •Сложная обработка31
- •Повторное использование
- •Простота установки
- •Простота эксплуатации
- •Количество возможных установок на различных платформах
- •Гибкость32
- •Оценка трудоемкости разработки
- •Размер программного обеспечения в fp и loc
- •Распределение временных затрат по стадиям для маленьких и больших проектов
- •Статистические данные
- •Статистические (регрессионные) модели
- •Группа процессов
- •Определение весовых показателей вариантов использования
- •Определение технической сложности проекта
- •Определение уровня квалификации разработчиков
- •Оценка трудоемкости проекта
- •Методы, основанные на экспертных оценках
- •Метод дельфи
- •Метод декомпозиции работ
- •Средства оценки трудоемкости
- •Планирование итерационного процесса создания по
- •Глава 7 особенности современных проектов
- •Категории «безнадежных» проектов
- •Причины, порождающие «безнадежные» проекты
- •Причины разногласий между участниками проекта
- •Переговоры в «безнадежном» проекте
- •Человеческий фактор в «безнадежных» проектах
- •Процессы в «безнадежных» проектах
- •Динамика процессов
- •Контроль над продвижением проекта
- •Технология и инструментальные средства «безнадежных» проектов
- •Дополнительная литература
- •Краткий словарь терминов
- •Список основных сокращений
Система моделирования aris
В настоящее время наблюдается тенденция интеграции разнообразных методов моделирования и анализа систем, проявляющаяся в форме создания интегрированных средств моделирования. Одним из таких средств является продукт, носящий название ARIS - Architecture of Integrated Information System, разработанный германской фирмой IDS Scheer.
Система ARIS представляет собой комплекс средств анализа и моделирования деятельности предприятия, а также разработки ИС. Ее методическую основу составляет совокупность различных методов моделирования, отражающих разные взгляды на исследуемую систему. Одна и та же модель может разрабатываться с использованием нескольких методов, что позволяет использовать ARIS специалистам с различными теоретическими знаниями и настраивать его на работу с системами, имеющими свою специфику.
Методика моделирования ARIS основывается на разработанной профессором Августом Шером теории построения интегрированных ИС, определяющей принципы визуального отображения всех аспектов функционирования анализируемых компаний. ARIS поддерживает четыре типа моделей, отражающих различные аспекты исследуемой системы:
организационные модели, представляющие структуру системы — иерархию организационных подразделений, должностей и конкретных лиц, связи между ними, а также территориальную привязку структурных подразделений;
функциональные модели, содержащие иерархию целей, стоящих перед аппаратом управления, с совокупностью деревьев функций, необходимых для достижения поставленных целей;
информационные модели, отражающие структуру информации, необходимой для реализации всей совокупности функций системы;
модели управления, представляющие комплексный взгляд на реализацию бизнес-процессов в рамках системы.
Для построения перечисленных типов моделей используются собственные методы моделирования ARIS, а также известные методы и языки моделирования — ERM, UML, ОМТ и др.
В процессе моделирования каждый аспект деятельности предприятия сначала рассматривается отдельно, а после детальной проработки всех аспектов строится интегрированная модель, отражающая все связи между различными аспектами.
ARIS не накладывает ограничений на последовательность построения указанных выше типов моделей. Процесс моделирования можно начинать с любого из них в зависимости от конкретных условий и целей, преследуемых разработчиками.
Модели в ARIS представляют собой диаграммы, элементами которых являются разнообразные объекты — «функция», «событие», «структурное подразделение», «документ» и т.п. Между объектами устанавливаются разнообразные связи. Так, между объектами «функция» и «структурное подразделение» могут быть установлены связи следующих видов:
выполняет;
принимает решение;
участвует в выполнении;
должен быть проинформирован о результатах;
консультирует исполнителей;
принимает результаты.
Каждому объекту соответствует определенный набор атрибутов, которые позволяют ввести дополнительную информацию о конкретном объекте. Значения атрибутов могут использоваться мри имитационном моделировании или для проведения стоимостного анализа.
Таким образом, по результатам выполнения этого этапа возникает набор взаимосвязанных моделей, представляющих собой исходный материал для дальнейшего анализа.
Основная бизнес-модель ARIS — еЕРС (extended Event Driven Process Chain — расширенная модель цепочки процессов, управляемых событиями). Ниже приводятся основные объекты, используемые в данной нотации.
Объекты модели еЕРС
Наименование объекта |
Описание |
Функция |
Служит для описания функций (процедур, работ), выполняемых подразделениями/сотрудниками предприятия. |
Событие |
Служит для описания реальных событий, воздействующих на выполнение функций. |
Организационная единица |
Представляет различные организационные звенья предприятия (например, управление или отдел). |
Документ |
Отражает реальные носители информации, например бумажный документ. |
Прикладная система |
Отражает реальную прикладную систему, поддерживающую выполнение функции. |
Кластер информации |
Характеризует данные (набор сущностей и связей между ними). Используется для создания моделей данных. |
Связь между объектами |
Описывает тип отношений между некоторыми объектами, например, активацию выполнения функции некоторым событием. |
Логический оператор |
Оператор одного из трех типов («И», «ИЛИ», исключающее «ИЛИ»), определяющий связи между событиями и функциями в рамках процесса. Позволяет описать ветвление процесса. |
Помимо указанных в таблице основных объектов при построении диаграммы еЕРС могут быть использованы многие другие объекты. По существу, модель еЕРС расширяет возможности IDEFO, IDEF3 и DFD, обладая всеми их достоинствами и недостатками. Применение большого числа различных объектов, связанных различными типами связей, значительно увеличивает размер модели и делает ее плохо читаемой. Для понимания смысла нотации еЕРС достаточно рассмотреть основные типы объектов и связей. На рис. 3.1 представлена простейшая модель еЕРС, описывающая фрагмент бизнес-процесса предприятия.
Рис. 3.1. Модель еЕРС
Из рис. 3.1 видно, что связи между объектами имеют определенный смысл и отражают последовательность выполнения функций в рамках процесса. Стрелка, соединяющая Событие 1 и Функцию 1, «активирует» или инициирует выполнение Функции 1. Функция 1 «создает» Событие 2, за которым следует символ логического «И», «запускающий» выполнение Функций 2 и 3. Нотация еЕРС построена на определенных правилах:
каждая функция должна быть инициирована событием и должна завершаться событием;
в каждую функцию не может входить более одной стрелки, «запускающей» выполнение функции, и выходить не более одной стрелки, описывающей завершение выполнения функции.
На рис. 3.2 показано применение различных объектов ARIS при создании модели бизнес-процесса.
Рис. 3.2. Фрагмент модели бизнес-процесса
Из рис. 3.1 и 3.2 видно, что бизнес-процесс в нотации еЕРС представляет собой поток последовательно выполняемых работ (процедур, функций), расположенных в порядке их выполнения. Реальная длительность выполнения процедур в еЕРС визуально не отражается. Это приводит к тому, что при создании моделей возможны ситуации, когда на одного исполнителя будет возложено выполнение двух задач одновременно. Используемые при построении модели символы логики позволяют отразить ветвление и слияние бизнес-процесса. Для получения информации о реальной длительности процессов необходимо использовать другие инструменты описания, например графики Ганта в системе MS Project.
3.2.4.