
- •Содержание
- •1 Химическая термодинамика
- •1.1 Первое начало термодинамики
- •1.1.1 Основные понятия и определения
- •1.1.2 Первое начало термодинамики
- •1.1.3 Теплоемкость
- •Теплоемкость газов
- •Теплоемкость твердых тел
- •1.1.4 Работа и теплота термодинамических процессов
- •1.1.5 Типы тепловых эффектов
- •Закон Гесса
- •1.1.6 Способы определения тепловых эффектов при постоянной температуре
- •1.1.7 Зависимость теплового эффекта реакции от температуры
- •Анализ уравнения (1.5):
- •1.1.8 Примеры решения задач
- •1.2 Второе начало термодинамики
- •1.2.1 Основные понятия и определения
- •1.2.2 Математическое выражение
- •1.2.3 Изменение энтропии как критерий обратимости и необратимости процессов
- •Характеристика энтропии
- •1.2.4 Критерии направленности процессов в реальных системах
- •1.2.5 Расчет изменения энтропии в различных процессах
- •1.2.6 Фугитивность и коэффициент фугитивности реальных газов
- •1.2.7 Химический потенциал идеального и реального газа
- •1.2.8 Примеры решения задач
- •1.3 Химическое равновесие
- •1.3.1 Закон действующих масс
- •1.3.2 Способы выражения константы равновесия
- •1.3.3 Выражение состава равновесной смеси
- •1.3.4 Влияние различных факторов на смещение равновесия (на состав равновесной смеси)
- •1.3.5 Мера химического сродства Направление самопроизвольного протекания химической реакции
- •1.3.6 Методы определение константы равновесия при различной температуре (из справочных данных)
- •1. Из термодинамических свойств веществ
- •4. Из логарифмов констант равновесия реакций образования некоторых веществ.
- •1.3.7 Примеры решения задач
- •Решение
- •2 Фазовые равновесия
- •2.1 Основные понятия и определения
- •Однокомпонентные системы
- •Равновесие между конденсированными и газообразными фазами
- •Примеры решения задач.
- •Двухкомпонентные системы
- •2.4.1 Термический анализ как часть физико-химического анализа
- •2.4.2 Равновесие раствор – кристаллический компонент
- •2.4.3 Кривые охлаждения
- •2.4.4 Диаграмма плавкости двухкомпонентной системы с простой эвтектикой
- •2.4.5 Определение состава фаз и относительного количества фаз
- •2.4.6 Диаграмма состояния системы с устойчивым химическим соединением
- •2.4.7 Диаграмма состояния системы с неустойчивым химическим соединением (с перитектическим превращением)
- •2.4.8 Диаграмма состояния с ограниченной растворимостью в жидком состоянии (с монотектическим превращением)
- •2.5 Твердые растворы
- •2.5.1 Диаграмма состояния с полной растворимостью в жидком и твердом состоянии
- •2.5.2 Диаграмма состояния с ограниченной растворимостью в твердом виде
- •2. Диаграмма с перитектическим превращением
- •2.5.3 Примеры разбора диаграмм
- •План разбора диаграммы двухкомпонентной системы
- •3Растворы
- •3.1 Теоретические понятия
- •Способы выражения состава раствора
- •3.2 Закон Рауля. Идеальные растворы
- •3.3 Следствия из закона Рауля
- •3.3.1 Повышение температуры кипения идеального раствора
- •3.3.2 Понижение температуры замерзания раствора
- •3.4 Реальные растворы
- •3.4.1 Отклонения от закона Рауля
- •3.4.2 Активность. Коэффициент активности
- •Общее давление и состав пара и жидкости. Законы Коновалова
- •3.6 Разделение бинарных смесей путем перегонки
- •3.7 Равновесие «жидкость - пар» для практически несмешивающихся жидкостей
- •3.8 Осмотическое давление
- •3.8 Закон распределения Нернста. Экстракция
- •3.9 Примеры решения задач
- •Электрохимия электрическая проводимость растворов электролитов
- •1 Сильные и слабые электролиты
- •Электрическая проводимость
- •2.1 Удельная электрическая проводимость
- •2.2 Молярная и эквивалентная электрические проводимости
- •3.3 Определение предельной эквивалентной электрической проводимости растворов сильных электролитов
- •Электродные процессы
- •Классификация электродов
- •Типы гальванических элементов
- •Диффузионный потенциал
- •Потенциометрическое титрование
- •Электролиз
- •Кинетика
- •Скорость химической реакции
- •Кинетическая классификация химических реакций
- •Молекулярность реакции
- •Порядок реакции
- •Реакции первого порядка
- •Реакции второго порядка
- •Влияние температуры на скорость реакции. Энергия активации
- •Методы определения порядка реакции
- •Метод подстановки
- •Графический метод
- •Метод начальных скоростей
- •Метод избытка (метод Вант - Гоффа)
- •5 Метод нахождения общего порядка реакции
- •Метод по доле непревращенного вещества к моменту времени t
Закон Гесса
Г.И. Гесс в 1836 г. еще до того, как было сформулировано l начало термодинамики (1842), экспериментально открыл основной закон термохимии:
«Тепловой эффект реакции не зависит от промежуточных стадий, а определяется лишь начальным и конечным состоянием системы.»
При этом процесс должен протекать термодинамически необратимо, а получаемые продукты иметь ту же температуру, что и исходные вещества.
Этот закон может быть более строго получен на основании первого начала термодинамики. Пусть единственным видом работы является работа преодоления внешнего давления (отсутствует работа против магнитных, электрических и прочих сил). Тогда уравнение (1.2) примет вид:
При изохорном процессе V = const, dV = 0.
При изобарном процессе Р = const
где
Так как теплота процесса в общем случае зависит от пути процесса, а ΔU и ΔH не зависят (поскольку и внутренняя энергия и энтальпия являются функциями состояния), следовательно теплоты процесса в частных случаях при V = const или при Р = const также не зависят от пути процесса. Таким образом, термодинамически более строгой формулировкой закона Гесса будет являться следующая:
«Максимальная теплота реакции, проведенной в изобарных либо в изохорных условиях, когда единственной работой является работа против сил внешнего давления, не зависит от промежуточных реакций, а лишь от начальных и конечных веществ и их состояний».
1.1.6 Способы определения тепловых эффектов при постоянной температуре
Все способы определения тепловых эффектов реакции основаны на законе Гесса. Применение закона Гесса основано на том, что с термохимическими уравнениями можно оперировать так же, как с алгебраическими.
Термохимические уравнения – уравнения реакций, для которых указываются числовые значения тепловых эффектов.
Они могут быть записаны двумя способами:
N2 + 3H2 = 2 NH3 – 91,88 Дж или
N2 + 3H2 = 2 NH3, ΔН = – 91,88 Дж
Наиболее распространенными способами определения тепловых эффектов являются следующие:
1. Непосредственно из закона Гесса
Можно выделить два пути перехода из графита в С02:
- сгоранием Cграфита,:
- через образование Cалмаза и далее сгорания Салмаза. Теплоты для разных путей равны
Н1 = Нх + Н2
Нх = Н1 - Н2
2. Из теплот образования
Нреак. = ni Н0f (кон) - ni Н0f(нач)
3. Из теплот сгорания
Нреак. = ni Н0сг(нач) - ni Н0сг(кон)
4. Комбинированием.
Рассмотрим применение этого метода на примере.
Н
айти
теплоту реакции
если известны тепловые эффекты реакций:
|
|
Реакции (а) и (б) следует переписать так, чтобы вещества в них находились в той части уравнения, в которой они присутствуют в искомом уравнении. То есть, если в искомом уравнении в левой части находятся С и О2, а в правой СО, то и в уравнениях (а) и (б) они должны находиться там же. Уравнение (а) этому соответствует, его не изменяем, а уравнение (б) переписываем, меняя местами компоненты:
Сложением этих уравнений мы пытаемся получить искомое уравнение. Но в уравнении (б) в правой части 2СО, а в искомом СО, значит все (б) уравнение надо умножить на 1/2, получим уравнение б':
Складываем теперь уравнения (а) и (б'), взаимно уничтожая С02, получаем
Сравнивая полученное уравнение с искомым, видим, что
НХ = Н1 - 1/2Н2