
- •Додатні та від’ємні числа Технологічна карта теми
- •Тема. Додатні і від’ємні числа
- •Початкове вивчення теми Урок 1. Поняття про додатні і від’ємні числа. Цілі числа. Раціональні числа
- •Додатні числа
- •Запитання і завдання на початкове розуміння.
- •Від’ємні числа.
- •Запитання і завдання на початкове розуміння
- •Число 0. Цілі числа. Раціональні числа
- •Запитання і завдання на початкове розуміння
- •Застосування додатних і від’ємних чисел
- •Завдання на початкове розуміння
- •Урок 2. Протилежні числа. Модуль числа Протилежні числа
- •Запитання і завдання на початкове розуміння
- •Модуль числа
- •Алгебраїчний зміст модуля числа.
- •Запитання і завдання на початкове розуміння
- •Знаходження чисел за їх модулем
- •Запитання і завдання на початкове розуміння
- •Урок 3. Порівняння раціональних чисел Порівняння додатних і від’ємних чиеел
- •Порівняння від’ємних чисел. Ряд від’ємних чисел
- •Щоб порівняти два від’ємних числа, достатньо
- •Запитання і завдання на початкове розуміння
- •Ряд цілих від’ємних чисел.
- •Запитання і завдання на початкове розуміння.
- •Урок 4. Координатна пряма.
- •Властивості прямої і відрізка.
- •Координатна пряма.
- •Запитання і завдання на початкове розуміння
- •Розміщення точок на координатній прямій
- •Запитання і завдання на початкове розуміння.
- •Урок 5. Задачі на координатну пряму Переміщення точок по координатній прямій
- •Завдання на початкове розуміння
- •Знаходження відстані між точками
- •Завдання на початкове розуміння
- •Середній рівень
- •Розв’язання
- •Розв’язання
- •План розв’язання
- •Високий рівень
- •Розв’язання
- •Розв’язання
- •Достатній рівень
- •Високий рівень
- •Тематична контрольна робота Початковий рівень
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Початковий рівень
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Початковий рівень
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Початковий рівень
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Додавання раціональних чисел Технологічна карта теми
- •Віднімання раціональних чисел Технологічна карта теми
- •Тема. Додавання раціональних чисел
- •Початкове вивчення теми
- •Додавання додатного числа
- •Розв’язання
- •Розв’язання
- •Запитання і завдання на початкове розуміння
- •Додавання від’ємного числа
- •Розв’язання
- •Розв’язання
- •Запитання і завдання на початкове розуміння.
- •Урок 2. Додавання двох від’ємних чисел
- •Запитання і завдання на початкове розуміння.
- •Урок 3. Додавання чисел з різними знаками.
- •Запитання і завдання на початкове розуміння.
- •Запитання і завдання на початкове розуміння
- •Урок 4. Властивості додавання раціональних чисел
- •Переставна властивість
- •Сполучна властивість
- •Запитання і завдання на початкове розуміння.
- •1. Виконати додавання:
- •2. Виконати додавання:
- •3. Виконати додавання:
- •3. Розв’язати рівняння .
- •4. Розв’язати рівняння .
- •Початкове вивчення теми
- •Розв’язання
- •Розв’язання
- •1. Знайти різницю чисел і порівняти її з нулем.
- •Запитання і завдання на початкове розуміння
- •Урок 2. Вирази, які містять додавання і віднімання
- •Запитання і завдання на початкове розуміння.
- •Урок 3. Довжина відрізка
- •Запитання і завдання на початкове розуміння.
- •3. Знайти відстань на координатній прямій між точками а(5,7) і
- •1. Виконати дії:
- •Достатній рівень.
- •Високий рівень.
- •Тематична контрольна робота
- •Початковий рівень
- •Середній рівень
- •Достатнй рівень
- •Високий рівень
- •Перетворення виразів Технологічна карта теми
- •Тема. Перетворення виразів
- •Початкове вивчення теми Урок 1. Спрощення добутків
- •Запитання і завдання на початкове розуміння
- •Урок 2. Спрощення сум: зведення подібних доданків
- •Запитання і завдання на початкове розуміння
- •Урок 3. Розкриття дужок
- •Розв’язання
- •1. Спростити вираз: .
- •Достатній рівень
- •Високий рівень
- •Тематична контрольна робота
- •Початковий рівень
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Множення раціональних чисел Технологічна карта теми
- •Ділення раціональних чисел Технологічна карта теми
- •Тема. Множення раціональних чисел
- •Початкове вивчення теми Урок 1. Правила множення раціональних чисел
- •Розв’язання
- •Множення чисел з різними знаками
- •Розв’язання
- •Розв’язання
- •Множення двох від’ємних чисел
- •Розв’язання
- •Щоб помножити два від’ємних числа, достатньо перемножити їх модулі.
- •Щоб помножити два раціональні числа, потрібно
- •Запитання і завдання на початкове розуміння
- •Урок 2. Окремі випадки множення Властивість числа 0
- •Властивість числа 1
- •Властивість числа -1
- •Запитання і завдання на початкове розуміння
- •Урок 3. Властивості множення раціональних чисел
- •Переставна властивість
- •Сполучна властивість
- •Запитання і завдання на початкове розуміння.
- •Розподільна властивість
- •Запитання і завдання на початкове розуміння
- •3. Знайти значення виразу:
- •Запитання і завдання на початкове розуміння
- •Окремі випадки ділення.
- •Запитання і завдання на початкове розуміння
- •Урок 2. Обернені числа. Заміна ділення раціональних чисел
- •Властивості ділення
- •1. Ділення суми на число.
- •2. Ділення добутку чисел на число
- •Щоб поділити добуток на число, достатньо
- •Запитання і завдання на початкове розуміння.
- •1. Знайти значення виразу: .
- •Розв’язання
- •4. Розв’язати рівняння: .
- •Достатній рівень
- •Високий рівень
- •Тематична контрольна робота
- •Початковий рівень
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Рівняння Технологічна карта теми
- •Розв’язування задач за допомогою рівнянь Технологічна карта теми
- •Властивість додавання
- •Властивість перенесення доданка
- •Властивість множення
- •Властивість ділення
- •Запитання і завдання на початкове розуміння
- •Загальні відомості про рівняння
- •Запитання і завдання на повторення
- •Розв’язування рівнянь на основі залежностей між компонентами дій
- •Запитання і завдання на повторення
- •Урок 2. Основні властивості і правила перетворення рівнянь
- •Властивість множення
- •Запитання і завдання на початкове розуміння
- •Запитання і завдання на початкове розуміння
- •Запитання і завдання на початкове розуміння
- •3. Розв’язати рівняння
- •Завдання на початкове розуміння
- •Розв'язання
- •Розв’язання
- •Розв’язання
- •Розв’язання
- •Запитання і завдання на початкове розуміння
- •Урок 2. Приклади розв’язування задач за допомогою рівнянь
- •Розв’язування
- •Розв’язання
- •Розв'язування
- •Запитання і завдання на початкове розуміння
- •Розв'язання
- •Розв'язання
- •Розв'язання
- •Достатній рівень
- •Розв'язання
- •Розв'язання
- •Розв'язання
- •Високий рівень
- •Розв'язання
- •Розв'язання
- •Розв'язання
- •Розв'язання
- •Достатній рівень
- •Високий рівень
- •Тематична контрольна робота
- •Початковий рівень
- •Середній рівень
- •Достатнй рівень
- •Високий рівень
- •Початковий рівень
- •Середній рівень
- •Достатнй рівень
- •Високий рівень
- •Початковий рівень
- •Середній рівень
- •Достатнй рівень
- •Високий рівень
- •Початковий рівень
- •Середній рівень
- •Достатнй рівень
- •Високий рівень
- •Тема. Прямокутна система координат
- •Початкове вивчення теми Урок 1. Перпендикулярні прямі
- •Запитання і завдання на початкове розуміння
- •Урок 2. Паралельні прямі
- •Урок 3. Координатна площина Система координат
- •Координати точки на площині
- •Побудова точки за її координатою
- •Розміщення точок на координатній площині
- •Запитання і завдання на початкове розуміння
- •Урок 4. Графіки залежності
- •Завдання на початкове розуміння
Тематична контрольна робота
Варіант 1
Початковий рівень
1. Яке з наведених чисел є коренем рівняння –2x = 8?
а) ; б) 4; в) –4; г) .
2. Корінь рівняння 5x = –2 дорівнює значенню виразу:
а) 5 : (–2); б) –2 : 5; в) –2 + 5; г) 5 · (–2).
3. Якщо в рівнянні 6x + 5 = 7 доданок 5 перенести у праву частину, то одержимо рівняння:
а) 6x = 7 + 5; б) 6x = 7 · 5; в) 6x = –7 · 5; г) 6x = 7 – 5.
4. Якщо в рівнянні 5x = 2x – 3 доданок 2x перенести в ліву частину, то одержимо рівняння:
а) 5x – 2x = –3; б) 5x – 2x = 3; в) 5x + 2x = 3; г) 5x + 2x = –3.
5. Одне з чисел на 4,2 більше, ніж друге. Якщо менше з чисел позначити через x, то більше з чисел буде дорівнювати:
а) 4,2x; б) x + 4,2; в) x – 4,2; г) 4,2 – x.
6. Одне з додатних чисел у 3 рази більше, ніж друге. Якщо менше з чисел позначити через x, то більше число буде дорівнювати:
а) x – 3; б) x + 3; в) x : 3; г) 3x.
Середній рівень
1. Розв’язати рівняння:
а) –9x = 5; б) 10x – 9 = 0.
2. Розв’язати рівняння 7x – 11 = 13 – x.
3. У двох бригадах працює 96 чоловік, причому у першій — на 12 чоловік більше, ніж у другій. Скільки чоловік у кожній бригаді? Розв’язати задачу за допомогою рівняння.
4. У першому бідоні в 4 рази більше молока, ніж у другому. Скільки молока в першому бідоні, якщо в ньому на 18 л молока більше, ніж у другому? Розв’язати задачу за допомогою рівняння.
Достатнй рівень
1. Розв’язати рівняння 2(x – 1,5) + 4 = x – 5.
2. Сума двох чисел дорівнює 105,8. Одне з них на 30% більше, ніж інше. Знайти менше з цих чисел.
3. За три дні туристи пройшли 76 км. За другий день вони пройшли на 6 км більше, ніж за перший, а за третій — на 8 км менше, ніж за другий. Скільки кілометрів проходили туристи кожного дня?
4. На першій ділянці у 4 рази більше кущів малини, ніж на другій. Якщо з першої ділянки пересадити на другу 60 кущів, то на обох ділянках кущів стане порівну. Скільки кущів малини було на кожній ділянці спочатку?
Високий рівень
1. Розв’язати
рівняння
.
2. У першій бригаді було у 5 разів більше робітників, ніж у другій. Після того як з першої бригади перевели 7 чоловік у другу, у першій стало людей у два рази більше, ніж у другій. Скільки робітників було у кожній бригаді спочатку?
3. 0,7 першого числа дорівнює 0,5 другого числа. Знайти ці числа, якщо їх різниця дорівнює 20.
4. З пункту А в пункт В виїхав пасажирський поїзд швидкість якого 60 км/год. Через 40 хвилин назустріч йому з пункту В виїхав швидкий поїзд зі швидкістю 90 км/год. Відстань між пунктами дорівнює 490 км. Яку відстань проїхав до зустрічі пасажирський поїзд?
Варіант 2
Початковий рівень
1. Яке з наведених чисел є коренем рівняння 4x = -16?
а) ; б) 4; в) –4; г) .
2. Корінь рівняння 6x = –4 дорівнює значенню виразу:
а) 6 : (–4); б) –4 : 6; в) –4 + 6; г) 6 · (–4).
3. Якщо в рівнянні 7x + 5 = 21 доданок 5 перенести у праву частину, то одержимо рівняння:
а) 7x = 21 + 5; б) 7x = 21 · 5; в) 7x = –21 · 5; г) 7x = 21 – 5.
4. Якщо в рівнянні 4x = 5x – 3 доданок 5x перенести в ліву частину, то одержимо рівняння:
а) 5x – 4x = –3; б) -5x – 4x = 3; в) -5x + 4x = -3; г) -5x + 4x = 3.
5. Одне з чисел на 5,6 більше, ніж друге. Якщо менше з чисел позначити через x, то більше з чисел буде дорівнювати:
а) 5,6x; б) x + 5,6; в) x – 5,6; г) 5,6 – x.
6. Одне з додатних чисел у 5 разів більше, ніж друге. Якщо менше з чисел позначити через x, то більше число буде дорівнювати:
а) x – 5; б) x + 5; в) x : 5; г) 5x.